\[\Longleftrightarrow \quad \sum_{j=1}^{N_{u}} u_{j} a\left(\varphi_{j}, \varphi_{i}\right)+\sum_{j=1}^{N_{p}} p_{j} b\left(\varphi_{i}, \psi_{j}\right)=\ell\left(\varphi_{i}\right) \quad \forall i \in \mathbb{I}, N_{u} \mathbb{J}\]
\[\Longleftrightarrow \quad\left[\begin{array}{ll}
A & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
U \\
P
\end{array}\right]=\left[\begin{array}{l}
F \\
G
\end{array}\right]\]
\[\begin{aligned}
A_{i, j} &=\left(a\left(\varphi_{i}, \varphi_{j}\right)\right)_{i, j} \in M_{N_{u}}(\mathbb{R}) & U &=\left(u_{j}\right), \quad F=\left(f\left(\varphi_{j}\right)\right)_{j} \in \mathbb{R}^{N_{u}} \\
B &=\left(b\left(\varphi_{j}, \psi_{i}\right)\right)_{i, j} \in M_{N_{u}, N_{p}}(\mathbb{R}) & P & =\left(p_{j}\right), \quad G=\left(g\left(\psi_{i}\right)\right)_{j} \in \mathbb{R}^{N_{p}}
\end{aligned}\]