
PARALLEL PROGRAMMING...
By Patrick Lemoine 2023

Parallel Programming: Overview

Sequential Parallel Programming

Hardware Architecture

Architecture of a CPU versus GPU

AMD ROCm and CUDA Platforms

GPGPU (General Purpose computation on Graphics Processing Units)

Programming Interface for parallel computing

MPI (Message Passing Interface)

OpenMP (Open Multi-Processing)

GOAL

SESSION 1/6

Traditional Computing:

 Programs are broken into series instruction.
 Executed by a single processor sequentially.
 No coordination required

Sequential / Parallel Programming

Parallel programming is the use of several calculation :

 Programs are broken co-current subprograms
 Executed on multiple processors in parallel
 Each party is still discovered in instructions
 Coordination required between processors
 Instructions of each party are executed in parallel

Hardware Architecture

CPU (Central Processing Unit)

A CPU (Central Processing Unit) is the most important processor in a given computer.
It executes instructions of a computer program, such as arithmetic, logic, controlling,
and input/output (I/O) operations.

It constitutes the physical heart of the entire computer system.

Linked with various peripheral equipment, including input/output devices and auxiliary storage units.

CPU: Different architectures of the processor

There is a classification of the different CPU architectures.

Five in number, they are used by programmers depending on the desired results:

CISC: very complex addressing.

RISC: simpler addressing and instructions performed on a single cycle.

VLIW: long, but simpler instructions.

vectorial: contrary to the processing in number, the instructions are vectorial.

dataflow: data is active unlike other architectures.

CPU (Central Processing Unit): Trends

CPU (Central Processing Unit): Trends

GPU (Graphics Processing Unit)

A GPU is uses to speed up the process of creating and rendering
computer graphics, designed to accelerate graphics and image
processing.

It is the most important hardware.

But have later been used for non-graphic calculations involving
embarrassingly parallel problems due to their parallel structure.

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

CPU vs GPU

CPU is composed of just a few cores with lots of cache
memory that can handle a few software threads at a time.

In contrast, a GPU is composed of hundreds of cores that
can handle thousands of threads simultaneously.

GPU is specialized for compute intensive, highly data
parallel computation

- More area is dedicated to processing
- Good for high arithmetic intensity programs with a high
ratio between arithmetic operations and memory
operations.

CPU vs GPU Comparison

CPU: Latency-oriented design GPU: Throughput Oriented Design

Clock High clock frequency Moderate clock frequency

Caches
Large sizes
Converts high latency accesses in memory to low latency
accesses in cache

Small caches
To maximize memory throughput

Control
Sophisticated control system
Branch prediction to reduce latency due to branching
Data loading to reduce latency due to data access

Single controlled
No branch prediction
No data loading

Powerful Arithmetic Logic
Unit (ALU) Reduced operation latency Numerous, high latency but heavily pipelined for high

throughput

Other aspects

Lots of space devoted to caching and control logic. Multi-level
caches used to avoid latency
Limited number of registers due to fewer active threads
Control logic to reorganize execution, provide ILP, and minimize
pipeline hangs

Requires a very large number of threads for latency to
be tolerable

Beneficial aspects for
applications

CPUs for sequential games where latency is critical.
CPUs can be 10+X faster than GPUs for sequential code.

GPUs for parallel parts where throughput is critical.
GPUs can be 10+X faster than GPUs for parallel code.

GPU (Graphics Processing Unit)

• GPU is the chip in computer video cards, PS3, Xbox, etc

– Designed to realize the 3D graphics pipeline

• Application Geometry Rasterizer Image

• GPU development:

– Fixed graphics hardware

– Programmable vertex/pixel shaders

– GPGPU

• General purpose computation (beyond graphics) using GPU in applications other than 3D
graphics

• GPGPU can be treated as a co-processor for compute intensive tasks

– With sufficient large bandwidth between CPU and GPU.

GPU Performance

GPU Memory Bandwidth

GPU memory bandwidth is a measure of the
data transfer speed between a GPU and the
system across a bus, such as PCI Express (PCIe)
or Thunderbolt.

CPU and GPU CONNECTION

The GPU pipeline

 GPU receives geometry information from the
CPU as an input and provides a picture as an
output

host
interface

vertex
processing

triangle
setup

fragment
 processing

memory
interface

Native GPU code: HIP/CUDA

CUDA from NVIDIA
 Has been a standard for native GPU code for years
 Extensive set of optimized libraries available
 Custom syntax (extension of C++) supported only by CUDA compilers
 Support only f or NVIDIA devices

HIP (Heterogeneous-computing Interface for Portability) from AMD
 AMD effort to offer a common programming interface that works on both CUDA and ROCm devices
 Standard C++ syntax, uses nvcc/hcc compiler in the background
 Almost a one-on-one clone of CUDA from the user perspective
 Ecosystem is new and developing fast

AMD and NVIDIA offers also a wide set of optimized libraries and tools

GPGPU
General Purpose computation

on Graphics Processing Units.

GPGPU (General-Purpose Graphics Processing Unit)

 GPGPU: Using graphic hardware for non-graphic computations

 Prefect for massive parallel processing on data paralleled applications

 GPU acts as an “accelerator” to the CPU (heterogeneous system)
 Most lines of code are executed on the CPU (serial computing)
 Key computational kernels are executed on the GPU (stream computing)

 Taking advantage of the large number of cores and high graphics memory bandwidth

 GPUs now firmly established in HPC industry
 Can augment each node of parallel system with GPUs

GPGPU: Programming Considerations

 Standard (CPU) code will not run on a GPU unless it is adapted

 Programmer must
 decompose problem onto the hardware in a specific way (e.g. using a hierarchical thread/grid model in CUDA)
 Manage data transfers between the separate CPU and GPU memory spaces.
 Traditional language (C, C++, Fortran etc) not enough, need extensions, directives, or new language.

 Once code is ported to GPU, optimization work is usually required to tailor it to the hardware and achieve good

performance

 Many researchers are now successfully exploiting GPUs
 Across a wide range of application areas

GPGPU (General-Purpose Graphics Processing Unit)

A GPGPU is a GPU that is programmed for purposes beyond graphics processing,

such as performing computations typically conducted by a Central Processing Unit (CPU).

Architecture

GPGPU (General-Purpose Graphics Processing Unit)

Advantages of GPGPU

 GPUs have many more cores than CPUs, which allows them to process large amounts of data in parallel. This can result in
significant speedups for some problems, especially those involving matrices, vectors, images or graphics.

 GPUs can also handle floating point operations more efficiently than CPUs, which is important for scientific computing
and machine learning applications.

 GPUs can be used to accelerate various domains such as computer vision, natural language processing, cryptography,
bioinformatics, physics simulation, etc.

GPGPU (General-Purpose Graphics Processing Unit)

Disadvantages of GPGPU

 GPUs are not suitable for all kinds of problems, especially those that require sequential or branching logic, complex data
structures, or synchronization among threads.

 GPUs have limited memory and bandwidth compared to CPUs, which can limit the amount of data that can be transferred
or processed at once.

 GPUs require specialized programming languages and APIs to access their features, which can increase the complexity
and learning curve for developers.

GPGPU Programming Languages and APIs

There are several options for programming GPGPU applications:

CUDA: A proprietary platform developed by Nvidia that allows programmers to write C/C++ code that runs directly on Nvidia
GPUs. It also provides libraries and tools for various domains such as linear algebra, image processing, deep learning, etc.

OpenCL: An open standard developed by the Khronos Group that supports multiple platforms and devices, including CPUs,
GPUs, FPGAs, etc. It defines a C-like language and a runtime API for executing kernels on heterogeneous devices.

DirectCompute: A Microsoft API that is part of DirectX 11 and 12 that enables GPGPU programming on Windows platforms.
It supports HLSL shaders and C++ AMP extensions for writing compute kernels.

Metal: An Apple API that provides low-level access to the GPU on iOS and macOS platforms. It supports Swift and Objective-
C languages for writing compute shaders.

Vulkan: A cross-platform API developed by the Khronos Group that provides low-level access to the GPU and other devices. It
supports SPIR-V as an intermediate language for writing compute shaders.

ROCm: is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming and spans
several domains: GPGPU, HPC ,heterogeneous computing

Programming interface for parallel
computing

 병렬컴퓨팅을위한프로그래밍인터페이스

Programming Interface

MPI (Message Passing Interface) and

 OpenMP (Open Multi-Processing)

Programming interface MPI, OpenMP

MPI, OpenMP two complementary parallelization models.

MPI (Message Passing Interface) is a multi-process model whose mode of communication between the processes is explicit
(communication management is the responsibility of the user).

Generally used on multiprocessor machines with distributed memory.

It is a library for passing messages between processes without sharing.

OpenMP (Open Multi-Processing) is a multitasking model whose
mode of communication between tasks is implicit (the management
of communications is the responsibility of the compiler).

OpenMP is used on shared-memory multiprocessor machines. It
focuses on shared memory paradigms. It is a language extension for
expressing data-parallel operations (usually parallelized arrays over
loops).

MPI vs OpenMP

MPI OpenMP

Portable to a distributed and shared memory machine.
Scale beyond a node

No data placement issues

Easy to implement parallelism
Implicit communications

Low latency, high bandwidth
Dynamic Load Balancing

MPI OpenMP

Explicit communication
High latency, low bandwidth

Difficult load balancing

Only on nodes or shared memory machines
Scale on Node

Data placement problem

Thank you for your attention !

	Slide 1
	Parallel Programming: Overview
	Slide 3
	Slide 4
	CPU (Central Processing Unit)
	CPU: Different architectures of the processor
	Slide 7
	Slide 8
	GPU (Graphics Processing Unit)
	CPU vs GPU
	CPU vs GPU Comparison
	GPU (Graphics Processing Unit)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	GPGPU (General-Purpose Graphics Processing Unit)
	GPGPU (General-Purpose Graphics Processing Unit) (2)
	GPGPU (General-Purpose Graphics Processing Unit) (3)
	GPGPU Programming Languages and APIs
	Slide 24
	Slide 25
	Programming interface MPI, OpenMP
	MPI vs OpenMP
	Slide 28

