PARALLEL PROGRAMMING...

By Patrick Lemoine 2023

Parallel Programming: Overview

SESSION 1/6

Sequential Parallel Programming

Hardware Architecture
Architecture of a CPU versus GPU
AMD ROCm and CUDA Platforms

GPGPU (General Purpose computation on Graphics Processing Units)
Programming Interface for parallel computing
MPI (Message Passing Interface)

OpenMP (Open Multi-Processing)

Sequential / Parallel Programming

“g‘%" Traditional Computing: e:::’ Parallel programming is the use of several calculation :
* Programs are broken into series instruction. * Programs are broken co-current subprograms
* Executed by a single processor sequentially. * Executed on multiple processors in parallel
* No coordination required * Each party is still discovered in instructions

* Coordination required between processors
* Instructions of each party are executed in parallel

instructions

—_—

—_—

—

—
N 3 2 "

L4
instructions JT ‘éﬁ v

—» CPU q S
[\ -~
IN 2 "

3

Hardware Architecture

CPU (Central Processing Unit)

CPU

Cantral
Unit _Instructions

-
Processar

A CPU (Central Processing Unit) is the most important processor in a given computer.
It executes instructions of a computer program, such as arithmetic, logic, controlling,
and input/output (I/0) operations.

Registers

ombinationa
Lagic

Qutput

—-| Input '

i-ﬂ

r_f"‘\

It constitutes the physical heart of the entire computer system.

Linked with various peripheral equipment, including input/output devices and auxiliary storage units.

dyr’
e

CPU: Different architectures of the processor opu acnecture B

There is a classification of the different CPU architectures.

Five in number, they are used by programmers depending on the desired results:
CISC: very complex addressing.
RISC: simpler addressing and instructions performed on a single cycle.
VLIW: long, but simpler instructions.

vectorial: contrary to the processing in number, the instructions are vectorial.

dataflow: data is active unlike other architectures.

CPU (Central Processing Unit): Trends

CPU Trends

CPU Trends
1E+10 ==

Frequency (MHz
1E+08 o : : q y)
Transistor (1000s)

1000000 ==) .- ' \ Power {Watts}

10000 ==

L o 90 @b CERD SEISED 0%
= i
Year 2003

CPU (Central Processing Unit): Trends

7 L i
10 - Transistors

6 oz B (thousands)
107 n .

A ‘f‘im y :
10 F 4 aats S ﬁlnr?le—Thread
a A erformance
10t b i *;A 00d} e | (SpecINT x 10%)
44 .

. :: e A ‘ﬁ I!h“.‘ |. Frequency (MHz)
10° } . AA M, .‘aiﬂ =

.| . ‘.‘.I ""‘;" N Tu}{,plcal Power
10 ° . -y gy P TRW) % (Watts)

A ..I "- v A A 4 L 2 .‘

- _ - R 'v:{_ ¥ i ¢:ﬁ'§ ‘| Number of

10 i S o ¢ z‘t ¢ Logical Cores
A v v v vvw
10° —; :) DU SHPULPUPORIRP AP0 -
| | 1 1
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammand, and C. Batten
MNew plot and data collected for 2010-2017 by K. Rupp

GPU (Graphics Processing Unit)

A GPU is uses to speed up the process of creating and rendering
computer graphics, designed to accelerate graphics and image
processing.

It is the most important hardware.

But have later been used for non-graphic calculations involving
embarrassingly parallel problems due to their parallel structure.

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

CPU vs GPU

CPU GPU
Latency Oriented Cores Throughput Oriented Cores

Chip Chip
Core Compute Unit
Cache/Local Mem
Local Cache
SIMD
SIMD Unit Unit

—
=
=Y
@
i)
=
=}
«

CPU is composed of just a few cores with lots of cache
memory that can handle a few software threads at a time.

In contrast, a GPU is composed of hundreds of cores that
can handle thousands of threads simultaneously.

GPU is specialized for compute intensive, highly data
parallel computation

- More area is dedicated to processing

- Good for high arithmetic intensity programs with a high
ratio between arithmetic operations and memory
operations.

——
v shutterstock com - 1435328684

¥ ¥ ¥ ¥

CPU

CALU ALY

Low compute density
Complex control logic

Large caches (L1$/L2$, etc.)
Optimized for serial operations

* Fewer execution units (ALUs)
* Higher clock speeds

Shallow pipelines (<30 stages)
Low Latency Tolerance
Newer CPUs have more parallelism

*

* % % *

High compute density
High Computations per Memory Access

Built for parallel operations
* Many parallel execution units (ALUs)
* Graphics is the best known case of parallelism

Deep pipelines (hundreds of stages)
High Throughput

High Latency Tolerance

Newer GPUs:

* Better flow control logic (becoming more CPU-like)
+ Scatter/Gather Memory Access
* Don't have one-way pipelines anymore

CPU vs GPU Comparison

CPU: Latency-oriented design

GPU: Throughput Oriented Design

Clock High clock frequency Moderate clock frequency
Large sizes Small caches
Caches Converts high latency accesses in memory to low latency ..
. To maximize memory throughput
accesses in cache
Sophisticated control system Single controlled
Control Branch prediction to reduce latency due to branching No branch prediction

Data loading to reduce latency due to data access

No data loading

Powerful Arithmetic Logic

Reduced operation latency

Numerous, high latency but heavily pipelined for high

Unit (ALU) throughput
Lots of space devoted to caching and control logic. Multi-level
caches used to avoid latency .

Other aspects Limited number of registers due to fewer active threads Requires a very large number of threads for latency to
: : . . o be tolerable
Control logic to reorganize execution, provide ILP, and minimize
pipeline hangs
Beneficial aspects for CPUs for sequential games where latency is critical. GPUs for parallel parts where throughput is critical.

applications

CPUs can be 10+X faster than GPUs for sequential code.

GPUs can be 10+X faster than GPUs for parallel code.

GPU (Graphics Processing Unit)

* GPU is the chip in computer video cards, PS3, Xbox, etc
— Designed to realize the 3D graphics pipeline
* Application [] Geometry [] Rasterizer!] Image
* GPU development:
— Fixed graphics hardware
— Programmable vertex/pixel shaders
— GPGPU

* General purpose computation (beyond graphics) using GPU in applications other than 3D
graphics

* GPGPU can be treated as a co-processor for compute intensive tasks
— With sufficient large bandwidth between CPU and GPU.

GPU Performance

iy - T T T T T
[—d— CPUS, Intel ; : Gﬂt@ | g0
[—J— GPUs, NVIDIA : e PN
+ 5. - : 2 .
b r;,ﬁ'-':" ' a‘!ﬂﬂ e&ﬂ = il
—@— GPUs. AMD i o ™]
| + MIC, Intel L :{f‘.‘-.'\;';“
. o
o .
v .t
T o SO e R . o o oy LT éﬂﬂ‘t i
g [4o
= 'C’E?cﬂ H
: | 5
o :
102 - ; -
2007 2008 2009 2010 201 202 203
End of Year

Theoretical Peak Parformance, Single Precision

Theoretical GB/s
360

330

om 1435328684

300

270

240 —

210

e ()

==l GeFarce GPU

s Tegla GRU

180

150

120

90

o =
F

s

" Tesla M2090

o R

4 Tesla C2050
y.

60

v 4

GeForce FX 5900 "

Tesla C1060
i Ivy Bridge
Sandy Bridge

Bloomfield

" Prescott Yoodcrest

Westmere

0 N thwasd g ; Halrnertn-l_-vn : 3 :
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

GPU Memory Bandwidth

GPU memory bandwidth is a measure of the
data transfer speed between a GPU and the
system across a bus, such as PCI Express (PCle)
or Thunderbolt.

<
e

|
i
®

(8)

107

Peak Memory Bandwidth Comparison

T T T T L] T L] ¥
e CPUS, Intel : : : : :]
—J— GPUs, NVIDIA ; ' 1

E
—@— GPUs, AMD : +,.;a-'a*‘ @ |
T

—gp— MIC, Intel o P -
: ; P A R 1
: : o Tl i ¢ 4

P
______ - 1
g L
Xe

&

&aiﬂ""ﬁi

Xeon ES-2697 v2

on E5-2609 w3

; B0 I:',:S-ﬁﬁﬁo :
b i ¥eon W5590 Xeon X5680 Xeon X5690
Keon X5482 Meon ¥5492 - ' - ' ' 1
i i i i i i i i
2007 2008 2009 20 201 P02 2013 2014
End of Year

CPU and GPU CONNECTION

Memory

for GPU

b
Execute parallel

|

Processing flow
on CUDA

in each core

)

The G PU pi pe I i ne Ordinary V6A Quake Open5L. Quake on 3Dfx

Resolu 320x200

256 65.536

F 30fps i 30fps
Créated by Mark D! Rejhon ~ www marky, com

» GPU receives geometry information from the
CPU as an input and provides a picture as an
output

host
interface

processing setup processing interface

vertex | triangle | fragment .| memory

A
A
A

Native GPU code: HIPICUDA

CUDA from NVIDIA
» Has been a standard for native GPU code for years
) > Extensive set of optimized libraries available
» Custom syntax (extension of C++) supported only by CUDA compilers
- » Support only f or NVIDIA devices

HIP (Heterogeneous-computing Interface for Portability) from AMD
» AMD effort to offer a common programming interface that works on both CUDA and ROCm devices
AMDT » Standard C++ syntax, uses nvcc/hce compiler in the background
HIPRT 3 Almost a one-on-one clone of CUDA from the user perspective
» Ecosystem is new and developing fast

bl S

AMD and NVIDIA offers also a wide set of optimized libraries and tools AMD NVIDIA.

GPGPU

General Purpose computation

on Graphics Processing Units.

GPGPU (General-Purpose Graphics Processing Unit)

GPGPU: Using graphic hardware for non-graphic computations
Prefect for massive parallel processing on data paralleled applications

GPU acts as an “accelerator” to the CPU (heterogeneous system)
— Most lines of code are executed on the CPU (serial computing)
— Key computational kernels are executed on the GPU (stream computing)

— Taking advantage of the large number of cores and high graphics memory bandwidth

®* GPUs now firmly established in HPC industry
— Can augment each node of parallel system with GPUs

GPGPU: Programming Considerations

® Standard (CPU) code will not run on a GPU unless it is adapted

Programmer must
— decompose problem onto the hardware in a specific way (e.g. using a hierarchical thread/grid model in CUDA)
— Manage data transfers between the separate CPU and GPU memory spaces.

— Traditional language (C, C++, Fortran etc) not enough, need extensions, directives, or new language.

Once code is ported to GPU, optimization work is usually required to tailor it to the hardware and achieve good

performance

Many researchers are now successfully exploiting GPUs

— Across a wide range of application areas

GPGPU (General-Purpose Graphics Processing Unit)

Architecture

Interconnection Network

¥

Global Memory (Device Memory)

A GPGPU is a GPU that is programmed for purposes beyond graphics processing,

such as performing computations typically conducted by a Central Processing Unit (CPU).

GPGPU (General-Purpose Graphics Processing Unit)

C

—

Advantages of GPGPU

» GPUs have many more cores than CPUs, which allows them to process large amounts of data in parallel. This can result in
significant speedups for some problems, especially those involving matrices, vectors, images or graphics.

> GPUs can also handle floating point operations more efficiently than CPUs, which is important for scientific computing
and machine learning applications.

» GPUs can be used to accelerate various domains such as computer vision, natural language processing, cryptography,
bioinformatics, physics simulation, etc.

GPGPU (General-Purpose Graphics Processing Unit)

o

—

Disadvantages of GPGPU

» GPUs are not suitable for all kinds of problems, especially those that require sequential or branching logic, complex data
structures, or synchronization among threads.

» GPUs have limited memory and bandwidth compared to CPUs, which can limit the amount of data that can be transferred
or processed at once.

» GPUs require specialized programming languages and APIs to access their features, which can increase the complexity
and learning curve for developers.

GPGPU Programming Languages and APIs

There are several options for programming GPGPU applications:

> |

CUDA C/C++

Vd a
OpenCL

Microsoft’

DirectX

N\

(Vul‘kan@

AMDZDU

ROCm

CUDA: A proprietary platform developed by Nvidia that allows programmers to write C/C++ code that runs directly on Nvidia
GPUs. It also provides libraries and tools for various domains such as linear algebra, image processing, deep learning, etc.

OpenCL: An open standard developed by the Khronos Group that supports multiple platforms and devices, including CPUs,
GPUs, FPGAs, etc. It defines a C-like language and a runtime API for executing kernels on heterogeneous devices.

DirectCompute: A Microsoft API that is part of DirectX 11 and 12 that enables GPGPU programming on Windows platforms.
It supports HLSL shaders and C++ AMP extensions for writing compute kernels.

Metal: An Apple API that provides low-level access to the GPU on i0OS and macOS platforms. It supports Swift and Objective-
C languages for writing compute shaders.

Vulkan: A cross-platform API developed by the Khronos Group that provides low-level access to the GPU and other devices. It
supports SPIR-V as an intermediate language for writing compute shaders.

ROCm: is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming and spans
several domains: GPGPU, HPC ,heterogeneous computing

Programming interface for parallel
computing

B AZE L 9e T2 a8 ol e wo] &

Programming Interface

MPI (Message Passing Interface) and

\ v OpenMP (Open Multi-Processing)

Programming interface MPIl, OpenMP

MPI, OpenMP two complementary parallelization models.

MPI (Message Passing Interface) is a multi-process model whose mode of communication between the processes is explicit
(communication management is the responsibility of the user).

Generally used on multiprocessor machines with distributed memory.
It is a library for passing messages between processes without sharing.
OpenMP OpenMP (Open Multi-Processing) is a multitasking model whose

& - mode of communication between tasks is implicit (the management
[o J[e] i H i W of communications is the responsibility of the compiler).
N 4

MPI
CPU

Private
Arrays

Network

OpenMP is used on shared-memory multiprocessor machines. It
MRSIConnec: Memory, Shared Amrays etc.

focuses on shared memory paradigms. It is a language extension for

CPU CPU . . .
G }—{ Core Tkl R G expressing data-parallel operations (usually parallelized arrays over

Communication often implicit, through cache
[] coherency and runtime |OOpS) .
Memory Memory

MPI vs OpenMP

(V] MPI OpenMP

Easy to implement parallelism
Implicit communications
Low latency, high bandwidth
Dynamic Load Balancing

Portable to a distributed and shared memory machine.
Scale beyond a node
No data placement issues

(X} MPI OpenMP
Explicit communication Only on nodes or shared memory machines
High latency, low bandwidth Scale on Node
Difficult load balancing Data placement problem

C
i)
e

C

O
=

©

| -

-]

@)

>

—
..m

-}

o

>
X

C

©
i
T

	Slide 1
	Parallel Programming: Overview
	Slide 3
	Slide 4
	CPU (Central Processing Unit)
	CPU: Different architectures of the processor
	Slide 7
	Slide 8
	GPU (Graphics Processing Unit)
	CPU vs GPU
	CPU vs GPU Comparison
	GPU (Graphics Processing Unit)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	GPGPU (General-Purpose Graphics Processing Unit)
	GPGPU (General-Purpose Graphics Processing Unit) (2)
	GPGPU (General-Purpose Graphics Processing Unit) (3)
	GPGPU Programming Languages and APIs
	Slide 24
	Slide 25
	Programming interface MPI, OpenMP
	MPI vs OpenMP
	Slide 28

