
PARALLEL PROGRAMMING...
By Patrick Lemoine 2023.

Parallel Programming: Overview

Programming Interface for parallel computing

MPI (Message Passing Interface)

GOAL

SESSION 2/6

Programming interface…

.

MPI (Message Passing Interface) is a multi-process model whose
mode of communication between the processes is explicit.

==> communication management is the responsibility of the user.

.

OpenMP (Open Multi-Processing) is a multitasking model
whose mode of communication between tasks is implicit

==> communications is the responsibility of the compiler.

Remember

.

MPI (Message Passing Interface)

MPI (Message Passing Interface)

 MPI is a library of subroutines (in Fortran,C, and C++)

 Allows the coordination of a program running as multiple processes in a distributed-memory environment.

 Flexible enough to also be used in a shared-memory environment.

 Can be used and compiled on a wide variety of single platforms or (homogeneous or heterogeneous) clusters
 of computers over a network.

 The scalability of MPI is not limited by the number of processors/cores on one computation node,
 as opposed to shared memory parallel models.

 MPI library is standardized

MPI: Basic Environment

Initializes MPI environment
Must be called in every MPI program
Must be first MPI call
Can be used to pass command line arguments to all

Terminates MPI environment
Last MPI function call

MPI programs start with a function call, which initializes the message passing library.

MPI: Basic Environment

Returns the rank of the calling MPI process
Within the communicator, comm
MPI_COMM_WORLD is set during Init(...)
Other communicators can be created if needed

Returns the total number of processes
Within the communicator, comm

MPI : Communicators

 A communicator is an identifier associated with a group of processes
– Each process has a unique rank within a specific communicator
 (the rank starts from 0 and has a maximum value of (nprocesses-1)).
– Internal mapping of processes to processing units
– Always required when initiating a communication by calling an MPI function or routine.

 Default communicator MPI_COMM_WORLD, which contains all available processes.

 Several communicators can coexist

 – A process can belong to different communicators at the same time,
 but has a unique rank in each communicator

MPI : Basic calls to exchange data

 Point-to-Point communications
 Only 2 processes exchange data
 It is the basic operation of all MPI calls

 Collective communications
 A single call handles the communication between all the processes in a communicator
 There are 3 types of collective communications

 Data movement (e.g. MPI_Bcast)
 Reduction (e.g. MPI_Reduce)
 Synchronization: MPI_Barrier

MPI: Point-to-Point Communication

Send a message
Returns only after buffer is free for reuse
Blocking

Received a message
Returns only when the data is avaible
Blocking

Two way communication
Blocking

MPI: Blocking communications

 The call waits until the data transfer is done.
 The sending process waits until all data are

transferred to the system buffer.
 The receiving process waits until all data are

transferred from the system buffer to the
receive buffer.

 All collective communications are blocking

MPI: Non-blocking communications

 Returns immediately after the data transferred
is initiated

 Allows to overlap computation with

communication

 Need to be careful though

– When send and receive buffers are
updated before the transfer is over, the
result will be wrong

MPI: Non-blocking send and received

Point to point communication

MPI_Isend (buf,count,datatype,dest,tag,comm,request,ierr)

MPI_Irecv (buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

MPI_Wait (request,status,ierr)

MPI_Test (request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-local operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it returns “flag =
false”. This is a local operation.

MPI: Deadlock

Blocking calls can results in deadlock
One process is waiting for message that will never arrive
Only option is to abort the interrupt/kill the code (CTRL-c) :-(
Might not always deadlock - depends on size of system buffer

MPI: Collective Communication (BroadCast)

One process (called “root”) sends data to all the other processes in the same communicator
Must be called by ALL processes with the same arguments

Useful when reading in input parameters from file.

MPI: Collective Communication (Gather)

One root process collects data from all the other processes in the same communicator
Must be called by all the processes in the communicator with the same arguments

Make sure that you have enough space in your receiving buffer!

Opposite of Scatter.

MPI: Collective Communication (Scatter)

One “root” process send a different piece of the data to each one of the other Processes (inverse of gather)

MPI: Collective Communication (Reduce)

One root process collects data from all the other processes in the same communicator
and performs an operation on the received data.

Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR, XOR, and a few more
User can define own operation with MPI_Op_create()

MPI: Collective Communication (Allreduce)

Applies reduction operation on data from all processes.

Store results on all processes.

MPI: Collective Communication (Barrier)

Process synchronization (blocking).
All processes forced to wait for each other.

Use only where necessary.
Will reduce parallelism.

When necessary, all the processes within a communicator can be forced
to wait for each other although this operation can be expensive

MPI: keywords

1 environment
• MPI Init: Initialization of the MPI environment
• MPI Comm rank: Rank of the process
• MPI Comm size: Number of processes
• MPI Finalize: Deactivation of the MPI environment
• MPI Abort: Stopping of an MPI program
• MPI Wtime: Time taking

2 Point-to-point communications
• MPI Send: Send message
• MPI Isend: Non-blocking message sending
• MPI Recv: Message received
• MPI Irecv: Non-blocking message reception
• MPI Sendrecv and MPI Sendrecv replace: Sending and receiving
messages
• MPI Wait: Waiting for the end of a non-blocking communication
• MPI Wait all: Wait for the end of all non-blocking
communications

3 Collective communications
• MPI Bcast: General broadcast
• MPI Scatter: Selective spread
• MPI Gather and MPI Allgather: Collecting
• MPI Alltoall: Collection and distribution
• MPI Reduce and MPI Allreduce: Reduction
• MPI Barrier: Global synchronization

4 Derived Types
• MPI Contiguous type: Contiguous types
• MPI Type vector and MPI Type create hvector: Types with a con-
standing
• MPI Type indexed: Variable pitch types
• MPI Type create subarray: Sub-array types
• MPI Type create struct: H and erogenous types
• MPI Type commit: Type commit
• MPI Type get extent: Recover the extent
• MPI Type create resized: Change of scope
• MPI Type size: Size of a type
• MPI Type free: Release of a type

MPI: Keywords

5 Communicator
• MPI Comm split: Partitioning of a communicator
• MPI Dims create: Distribution of processes
• MPI Cart create: Creation of a Cart ́esian topology
• MPI Cart rank: Rank of a process in the Cart ́esian topology
• MPI Cart coordinates: Coordinates of a process in the Cart ́esian
topology
• MPI Cart shift: Rank of the neighbors in the Cart ́esian topology
• MPI Comm free: Release of a communicator

6 MPI-IO
• MPI File open: Opening a file
• MPI File set view: Changing the view
• MPI File close: Closing a file

6.1 Explicit addresses
• MPI File read at: Reading
• MPI File read at all: Collective reading
• MPI File write at: Writing

6.2 Individual pointers
• MPI File read: Reading
• MPI File read all: collective reading
• MPI File write: Writing
• MPI File write all: collective writing
• MPI File seek: Pointer positioning

6.3 Shared pointers
• MPI File read shared: Read
• MPI File read ordered: Collective reading
• MPI File seek shared: Pointer positioning

7.0 Symbolic constants
• MPI COMM WORLD, MPI SUCCESS
• MPI STATUS IGNORE, MPI PROC NULL
• MPI INTEGER, MPI REAL, MPI DOUBLE PRECISION
• MPI ORDER FORTRAN, MPI ORDER C
• MPI MODE CREATE,MPI MODE RONLY,MPI MODE
WRONLY

MPI: Program Basics

MPI: Example

MPI: Example Point-to-Point communication

#include<iostream>
#include<mpi.h>
using namespace std;
int main (int argc, char *argv[])
{

int numprocs,myid;
MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Status status;
int small=myid;
cout<<"Before " <<myid<<" of "<<,numprocs<<" small = "<<small,<<endl;

If (myid==0) { MPI_Send(&small,1,MPI_INT,3,10,MPI_COMM_WORLD); }

If (myid==3) { MPI_Recv(&small,1,MPI_INT,0,10,MPI_COMM_WORLD,&status) }

MPI_Barrier(MPI_COMM_WORLD);

cout<<"After " <<myid<<" of "<<numprocs<<" small = "<<small<<endl;

MPI_Finalize();
}

MPI: Example Reduction

...
#include<mpi.h>
using namespace std;
double f(double a) {return (4.0 / (1.0 + a*a));}
int main (int argc, char *argv[])
{

int myid, numprocs;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
int n = 1000000000;
double pi,sum=0.0;
double startwtime = 0.0;
if (myid == 0) { startwtime = MPI_Wtime(); }
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
for (int i = myid + 1; i <= n; i += numprocs) { sum += f((i-0.5)/(double) n); }
sum/= (double) n;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0)
{
 cout<<"pi is approximately equal "<<setprecision(16) << pi <<" Error is"<<fabs(pi - M_PI)<<endl;
 cout<<"Wall clock time = "<<MPI_Wtime()-startwtime<<endl;
}
MPI_Finalize();
Exit(0);
}

GOAL : The following code computes the π number by using a numerical evaluation of
an integral by a rectangle method.

Each virtual core computes a part of the loop and a reduction instruction is performed

MPI: Example Broadcast

#include<iostream>
#include<mpi.h>
using namespace std;
int main (int argc, char *argv[])
{

int numprocs,myid,namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
MPI_Get_processor_name(processor_name,&namelen);

double reel=(double) myid;
cout<<"Before " <<myid<<" of "<<numprocs<<" on "<<processor_name<<" integervalue "<<reel<<endl;

MPI_Bcast(&reel,1, MPI_DOUBLE,3,MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);

cout<<"After " <<myid<<" of "<<numprocs<<" on "<<processor_name<<" integervalue "<<reel<<endl;

MPI_Finalize();
exit(0);
}

Broadcast a message from the root process to all other processes.
Useful when reading in input parameters from file.

COMPILING an MPI Program

 Compiling a program for MPI is almost just like compiling a regular C or C++ program

 The C compiler is mpicc and the C++ compiler is mpic++.

 For example, to compile MyProg.c you would use a command like

 mpicc - O2 -o MyProg MyProg . c

Thank you for your attention !

	Slide 1
	Parallel Programming: Overview
	Programming interface…
	Slide 4
	MPI (Message Passing Interface)
	MPI: Basic Environment
	MPI: Basic Environment (2)
	MPI : Communicators
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	MPI: keywords
	MPI: Keywords
	MPI: Program Basics
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	COMPILING an MPI Program
	Slide 29

