
PARALLEL PROGRAMMING...
By Patrick Lemoine 2023.

Parallel Programming: Overview

Programming Interface for parallel computing

OpenMP (Open Multi-Processing)

GOAL

SESSION 3/6

 병렬컴퓨팅을위한프로그래밍
인터페이스

OpenMP (Open Multi-Processing)

OpenMP (Open Multi-Processing)

 It allows you to manage:

 the creation of light processes.
 the sharing of work between these lightweight processes.
 synchronizations (explicit or implicit) between all light processes.
 the status of the variables (private or shared).

Open Specifications for Multi Processing (OpenMP) is a programming interface

for parallel computing on shared memory architecture.

OpenMP is based on Fork/Join model

1. When program starts, one Master thread is created
2. Master thread executes sequential portions of the program
3. At the beginning of parallel region, master thread forks new threads
4. All the threads together now forms a “team”
5. At the end of the parallel region, the forked threads die !

OpenMP (Open Multi-Processing)

OpenMP (Open Multi-Processing)

The OpenMP API consists of:

 compiler directives (for insertion into sequential Fortran/C/C++ code)
 a few library routines
 some environment variables

Advantages:
 User-friendly
 Incremental parallelization of a serial code
 Possible to have a single source code for both serial and parallelized versions

Disadvantages:
 Relatively limited user control
 Most suitable for parallelizing loops (data parallelism)
 Performance? ~

What is a Shared-Memory Program?

 One process that spawns multiple threads

 Threads can communicate via shared memory
 Read/Write to shared variables
 Synchronization can be required!

 OS decides how to schedule threads

OpenMP (Open Multi-Processing)

OpenMP: Shared Memory

 Shared memory model
 Threads communicate by accessing shared variables.

 The sharing is defined syntactically
 Any variable that is seen by two or more threads is shared.
 Any variable that is seen by one thread only is private.

 Race conditions possible
 Use synchronization to protect from conflicts.
 Change how data is stored to minimize the synchronization.

OpenMP: Multithreading

 Multithreading is hard
 Lots of expertise necessary.
 Deadlocks and race conditions.
 Non-deterministic behavior makes it hard to debug.

 Multithreading, natural programming model
 All processors share the same memory.
 Threads in a process see same address space.
 Many shared-memory algorithms developed.

OpenMP: Process and thread

 You need an existing process to create a thread.

 Each process has at least one thread of execution.

 A process has its own virtual memory space that cannot be accessed by other processes running
on the same or on a different processor.

 All threads created by a process share the virtual address space of that process.

 They read and write to the same address space in memory.
 They share the same process and user ids, file descriptors, and signal handlers.
 They have their own program counter value and stack pointer, and can run independently on several

processors.

What is the difference ?

OpenMP: Terminology and behavior

• OpenMP Team = Master + Worker

• Parallel Region is a block of code executed by all threads
simultaneously (has implicit barrier)

 The master thread always has thread id 0 !
 Parallel regions can be nested.

 If clause can be used to guard the parallel region.

OpenMP: Example Code Structure

Make “Hello World” multi-threaded..

OpenMP: Parallel Region

A parallel region identifies a portion of code that can be executed by different threads

 You can create a parallel region with the “parallel” directive
 You can request a specific number of threads with omp_set_num_threads(N)

Each thread will call pooh(ID,A) function with a different value of ID

 All the threads execute the same code
 The [A] array is shared
 Implicit synchronization at the end of the parallel region

OpenMP: Parallel Region

 The OpenMP compiler generates code logically analogous to that on the right.

 All known OpenMP implementations use a thread pool so full cost of threads creation
 and destruction is not incurred for each parallel region.

 Only three threads are created because the last parallel section will be invoked from the parent thread.

OpenMP: Behind the scenes...

OpenMP: Constructs Parallel Region

Parallel region

 Thread creates team, and becomes master (id 0).
 All threads run code after.
 Barrier at end of parallel section.

 shared
 private
 firstprivate
 default
 threadprivate
 lastprivate
 reduction

Shared

The variable inside the construct is the same as the one outside the
construct.

 In a parallel construct this means all threads see the same variable
but not necessarily the same value.

 Usually need some kind of synchronization to update them
correctly.

Private

The variable inside the construct is a new variable of the same type with an
undefined value

 In a parallel construct this means all threads have a different variable
 Can be accessed without any kind of synchronization

OpenMP: Data Sharing Attributes

Firstprivate
The variable inside the construct is a new variable of the same type but it
is initialized to the original value of the variable

 In a parallel construct this means all threads have a different variable
with the same initial value

 Can be accessed without any kind of synchronization

And default. What is the default?

 If there is a default clause, what the clause says
 none means that the compiler will issue an error if the attribute is not explicitly

set by the programmer.
 Otherwise, depends on the construct

 For the parallel region the default is shared.

OpenMP: Data Sharing Attributes

OpenMP: Synchronization

$OMP MASTER Execute section only with master thread (no implied barrier).

$OMP CRITICAL Restrict access to one thread at a time (otherwise block).

$OMP BARRIER Synchronize all threads.

$OMP ATOMIC Special case of CRITICAL, the statement following allows a specific memory location to be updated
atomically (no multiple writes, can take advantage of specific hardware instructions for atomic writes).

$OMP FLUSH
[(list)]

Ensure threads have consistent view of shared variables (else just the named list).

$OMP ORDERED Execute code in same order as under sequential execution.

$OMP SINGLE Block executed by only one thread (implied BARRIER and FLUSH at the end)

Directives to synchronize thread team or control thread access to code fragments

OpenMP: Barrier

When a thread reaches a barrier, it only continues after all the threads in the same thread team have reached it.

 Each barrier must be encountered by all threads in a team, or none at all

 The sequence of work-sharing regions and barrier regions encountered must be same for all threads in team

 Implicit barrier at the end of: do, parallel, single, workshare

OpenMP: Caution Race Condition

When multiple threads simultaneously read/write

Multiple OMP solutions :

 Reduction
 Atomic
 Critical

Should be 3!

OpenMP: Critical Section

One solution: use critical

Only one tread at a time can execute a critical section

Downside ?
YES SLOOOOWWW
Overhead and serialization

OpenMP: Atomic

Atomics like "mini" critical
Only one line

Certain limitations

Hardware controlled
Less overhead the critical

Atomic provides mutual exclusion but only applies to the
update of a memory location.

OpenMP: Reduction

 Avoids race condition
 Reduce variable must be shared
 Makes variable private, then performs operator at end of loop
 Operator cannot be overloaded (c++)

One of: +,*,-,/ (and &,^,|,&&,||)
OpenMP 3.1: added min and max for c/c++

OpenMP: Scheduling

Scheduling types:

Static
- Chunks of specified size assigned round-robin

Dynamic
- Chunks of specified size are assigned when thread finishes previous chunk

Guided
- Like dynamic, but chunks are exponentially decreasing
- Chunk will not be smaller than specified size

Runtime
- Type and chunk determined at runtime via environment variables

OpenMP: Scheduling

Illustration of the scheduling strategies of loop iterations.

OpenMP: Scheduling

How does a loop get split up ? In MPI, we have to do it manually!!!

If you do not tell what to do, the compiler decides
Usually compiler chooses "static" - chunks of N/p

OpenMP: Static Scheduling

You can tell the compiler what size chunks to take ?

Keeps assigning chunks until done.
Chunk size that is not a multiple of the loop will results in thread with uneven numbers.

OpenMP: Problem with Static Scheduling

What happens if loop iterations do not take the same amount of time ?

Load imbalance

OpenMP: Dynamic Scheduling

Chunks are assigned on the fly, as threads become available.

When a thread finishes on chunk, it is assigned another

Caveat: higher overhead than static!

 OpenMP Examples

OpenMP: API

 API for library calls that perform useful functions
 Must include "omp.h"
 Will not compile without OpenMP compiler support

COMPILING an OpenMP Program

 Compiling a program for MPI is almost just like compiling a regular C or C++ program

 For example, to compile MyProg.c you would use a command like

 gcc -fopenmp -o MyProg MyProg.c

 gcc -fopenmp -o MyProg MyProg.cpp

 g++ -c MyProg. cpp -o MyProg.o -fopenmp

 g++ MyProg.o -o MyProg -fopenmp -lpthread

OpenMP: Compute PI

GOAL : The following code computes the π number by
using a numerical evaluation of an integral by a
rectangle method.

OpenMP: Compute PI with padding

Remark about false sharing : If independent
data elements happen to sit on the same
cache line, each update will cause the cache
lines to “slosh back and forth” between
threads.

HotFix with PAD, elements you use are on
distinct cache lines.

Results

Padding arrays requires deep knowledge of the
cache architecture, also be careful...

OpenMP: Compute PI with omp for reduction

OpenMP: Fibonacci

fib(0) = 1
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2)

avec n ∈ ℕ

OpenMP: Quicksort

OpenMP: Gauss-Seidel

Gauss-Seidel Method is used to solve the linear
system Equations. It is a method of iteration for
solving n linear equation Ax=b with the unknown
variables.

OpenMP: Cholesky Factorization

The Cholesky factorization, also known as Cholesky
decomposition, is a process of breaking down of a Hermitian,
positive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose, which is important for
quick numerical solutions in linear algebra.

OpenMP: Performance Tips...

 Avoid serialization !

 Avoid using #pragma omp parallel for before loop.

 Use reduction whenever possible.

 Minimize I/O

 Minimize critical
- Use atomic instead of critical where possible.

Thank you for your attention !

	Slide 1
	Parallel Programming: Overview
	Slide 3
	OpenMP (Open Multi-Processing)
	Slide 5
	OpenMP (Open Multi-Processing)
	Slide 7
	OpenMP: Shared Memory
	OpenMP: Multithreading
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	OpenMP: Constructs Parallel Region
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	OpenMP: Caution Race Condition
	OpenMP: Critical Section
	OpenMP: Atomic
	OpenMP: Reduction
	OpenMP: Scheduling
	OpenMP: Scheduling (2)
	OpenMP: Scheduling
	OpenMP: Static Scheduling
	OpenMP: Problem with Static Scheduling
	OpenMP: Dynamic Scheduling
	Slide 31
	OpenMP: API
	COMPILING an OpenMP Program
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	OpenMP: Performance Tips...
	Slide 42

