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What is CUDA ?  



• CUDA Architecture

– Expose GPU parallelism for general-purpose computing

– Retain performance

• CUDA C/C++

– Based on industry-standard C/C++

– Small set of extensions to enable heterogeneous programming

– Straightforward APIs to manage devices, memory etc.

What is CUDA ?

A proprietary platform developed by Nvidia that allows programmers to 
write C/C++ code that runs directly on Nvidia GPUs. 

It also provides libraries and tools for various domains such as linear 
algebra, image processing, deep learning, etc.



CUDA 



GPU (Graphics Processing Unit) 

A GPU is uses to speed up the process of creating and rendering 
computer graphics, designed to accelerate graphics and image 
processing. 

It is the most important hardware. 

But have later been used for non-graphic calculations involving 
embarrassingly parallel problems due to their parallel structure. 

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A


 General Purpose computation using GPU in applications other than 3D graphics
 GPU accelerates critical path of application

 Data parallel algorithms leverage GPU attributes
 Large data arrays, streaming throughput
 Fine-grain SIMD parallelism
 Low-latency floating point (FP) computation

 Applications – see //GPGPU.org
 Game effects (FX) physics, image processing
 Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

What is GPGPU ?



 Scale code to hundreds of cores running thousands of threads

 The task runs on the GPU independently from the CPU 

CUDA: Goals



 Threads are grouped into thread blocks

 Blocks are grouped into a single grid

 The grid is executed on the GPU as a kernel

CUDA: Structure



 Blocks map to cores on the GPU

 Allows for portability when changing hardware

CUDA: Scalability



cudaMemcpy( void *dst,   void *src,   size_t nbytes,  enum cudaMemcpyKind direction); 
 returns after the copy is complete blocks CPU
 thread doesn’t start copying until previous CUDA calls complete

 

enum cudaMemcpyKind 
 cudaMemcpyHostToDevice 
 cudaMemcpyDeviceToHost 
 cudaMemcpyDeviceToDevice 

CUDA: Memory Tranfer



All kernel launches are asynchronous 
 control returns to CPU immediately 
 kernel starts executing once all previous CUDA calls have completed 

Memcopies are synchronous 
 control returns to CPU once the copy is complete 
 copy starts once all previous CUDA calls have completed 

cudaThreadSynchronize() 
 blocks until all previous CUDA calls complete 

Asynchronous CUDA calls provide: 
 non-blocking memcopies 
 ability to overlap memcopies and kernel execution

CUDA: Host Synchronization



 Shared memory much much faster than global

 Don’t trust local memory

 Global, Constant, and Texture memory available to 
both host and cpu

CUDA: Memory Hierarchy



Global memory not cached on G8x GPUs 
 High latency, but launching more threads hides latency 
 Important to minimize accesses 
 Coalesce global memory accesses (more later)
  

Shared memory is on-chip, very high bandwidth 
 Low latency (100-150times faster than global memory) 
 Like a user-managed per-multiprocessor cache 
 Try to minimize or avoid bank conflicts (more later) 

CUDA: Global and Shared Memory



Texture partition is cached 
 Uses the texture cache also used for graphics 
 Optimized for 2D spatial locality 
 Best performance when threads of a warp read locations that are close together in 2D

Constant memory is cached 
 4 cycles per address read within a single warp 
 Total cost 4 cycles if all threads in a warp read same address 
 Total cost 64 cycles if all threads read different addresses

CUDA: Texture and Constant Memory



 A coordinated read by a half-warp (16threads) 
 A contiguous region of global memory: 

 64bytes - each thread reads a word: int, float, …
 128bytes - each thread reads a double-word: int2, float2, … 
 256bytes - each thread reads a quad-word: int4, float4, …

Additional restrictions: 
 Starting address for a region must be a multiple of region size 
 The kth thread in a half-warp must access the kth element in a block being read

Exception: not all threads must be participating 
 Predicated access, divergence within a halfwarp

CUDA: Coalescing



Coalesced memory accesses Uncoalesced memory accesses

CUDA: Coalescing



 Shared memory is divided into banks
 Each bank has serial read/write access
 Bank addresses are striped
 If more than one thread attempts to access the 

same bank at the same time, they’re accesses 
are serialized

 This is a bank conflict

CUDA: Bank Conflicts



CUDA Concepts  



Heterogeneous Computing 

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CUDA CONCEPTS
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CUDA: Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device



#include <iostream>
#include <algorithm>

using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * 

RADIUS];
int gindex = threadIdx.x + blockIdx.x * 

blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

// Synchronize (ensure all the data is 
available)

__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; 

offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out;              // host copies of a, b, c
int *d_in, *d_out;          // device copies of a, b, 

c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup 
values

in  = (int *)malloc(size); fill_ints(in,  N + 
2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 
2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in,  size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in,  in,  size, 

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, 

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/

BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size, 

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code
serial code

parallel fn



CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory

PCI Bus



CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance

PCI Bus



CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance
3. Copy results from GPU memory to CPU memory

PCI Bus



CUDA: Program

__global__ void mykernel(void) {}

• CUDA C/C++ keyword __global__ indicates a function that:

– Runs on the device

– Is called from host code

• nvcc separates source code into host and device components

– Device functions (e.g. mykernel()) processed by 
NVIDIA compiler

– Host functions (e.g. main()) processed by standard host 
compiler

• gcc, cl.exe

With device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!



__global__ void mykernel(void){}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

Output:

$ nvcc hello.cu
$ a.out
Hello World!
$

CUDA: Program



• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code
May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()
– Similar to the C equivalents malloc(), free(), memcpy()

CUDA: Memory Management



// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, 
cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}

CUDA: Addition on the Device

int main(void) {

int a, b, c;                           // host copies of a, b, c

int *d_a, *d_b, *d_c;      // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

A = 2; b = 7;

__global__ void add(int *a, int *b, int *c)
{

*c = *a + *b;
}



RUNNING IN PARALLEL

Heterogeneous Computing 
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CONCEPTS
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GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

CUDA: Moving to Parallel



With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block
The set of blocks is referred to as a grid
Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) 
{

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

By using blockIdx.x to index into the array, each block handles a different index

On the device, each block can execute in parallel:

CUDA: Vector Addition on the Device

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3



CUDA: Vector Addition on the Device

    #define N 512

    int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c 

                    // and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

        // Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N blocks

        add<<<N,1>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }



• Difference between host and device

– Host CPU

– Device GPU

• Using __global__ to declare a function as device code

– Executes on the device

– Called from the host

• Passing parameters from host code to a device 
function

• Basic device memory management
– cudaMalloc()
– cudaMemcpy()
– cudaFree()

• Launching parallel kernels

– Launch N copies of add() with 
add<<<N,1>>>(…);

– Use blockIdx.x to access block index

CUDA: Review



INTRODUCING THREADS
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• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

CUDA: Threads



#define N 512
    int main(void) {
        int *a, *b, *c; // host copies of a, b, c
        int *d_a, *d_b, *d_c; // device copies of a, b, c
        int size = N * sizeof(int);

        // Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d_a, size);
        cudaMalloc((void **)&d_b, size);
        cudaMalloc((void **)&d_c, size);
        
        // Alloc space for host copies of a, b, c and setup input values
        a = (int *)malloc(size); random_ints(a, N);
        b = (int *)malloc(size); random_ints(b, N);
        c = (int *)malloc(size);

         // Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N threads

        add<<<1,N>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }

CUDA: Vector Addition Using Thread



COMBINING THREADS AND BLOCKS
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• We’ve seen parallel vector addition using:

– Many blocks with one thread each

– One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that…

• First let’s discuss data indexing…

CUDA: Combining Blocks and Threads



0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

• With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA: Indexing Arrays with Blocks and Threads



• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

          =      5      +     2      * 8;

          = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0

1 3 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

CUDA: Indexing Arrays example



• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}

CUDA: Vector Addition with blocks and Threads



    #define N (2048*2048)

    #define THREADS_PER_BLOCK 512

    int main(void) {

        int *a, *b, *c; // host copies of a, b, c

        int *d_a, *d_b, *d_c; // device copies of a, b, c

        int size = N * sizeof(int);

        // Alloc space for device copies of a, b, c

        cudaMalloc((void **)&d_a, size);

        cudaMalloc((void **)&d_b, size);

        cudaMalloc((void **)&d_c, size);

        // Alloc space for host copies of a, b, c and setup input values

        a = (int *)malloc(size); random_ints(a, N);

        b = (int *)malloc(size); random_ints(b, N);

        c = (int *)malloc(size);

CUDA: Addition with Blocks and Threads

        // Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU

 
add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>
(d_a, d_b, d_c);

        

        / Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }



• Update the kernel launch:

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

    int index = threadIdx.x + blockIdx.x * blockDim.x;

    if (index < n)

        c[index] = a[index] + b[index];

}

CUDA: Handling Arbitrary Vector Sizes



• Launching parallel kernels

– Launch N copies of add() with add<<<N/M,M>>>(…);

– Use blockIdx.x to access block index

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

  int index = threadIdx.x + blockIdx.x * blockDim.x;

CUDA
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• Consider applying a 1D stencil to a 1D array of elements

– Each output element is the sum of input elements within a radius

• If radius is 3, then each output element is the sum of 7 input elements:
radius radius

CUDA: 1D Stencil

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times

Implementing Within a 
Block



• Terminology: within a block, threads share data via shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

CUDA: Sharing Data Between Threads



• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

CUDA: Implementing with Shared Memory



__global__ void stencil_1d(int *in, int *out) {

  __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

  int gindex = threadIdx.x + blockIdx.x * blockDim.x;

  int lindex = threadIdx.x + RADIUS;

  // Read input elements into shared memory

  temp[lindex] = in[gindex];

  if (threadIdx.x < RADIUS) {

       temp[lindex - RADIUS] = in[gindex - RADIUS];

       temp[lindex + BLOCK_SIZE] = 

       in[gindex + BLOCK_SIZE];

  }

CUDA: Stencil Kernel



  // Apply the stencil

  int result = 0;

  for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

    result += temp[lindex + offset];

  // Store the result

  out[gindex] = result;

}

CUDA: Stencil Kernel



 The stencil example will not work…

 Suppose thread 15 reads the halo before thread 0 has fetched it…

  temp[lindex] = in[gindex];
  if (threadIdx.x < RADIUS) {
    temp[lindex – RADIUS = in[gindex – RADIUS];
    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
  }
  
  int result = 0;
  result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

CUDA: Data Race



• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be uniform across the block

CUDA: __syncthreads()



__global__ void stencil_1d(int *in, int *out) {

    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

    int gindex = threadIdx.x + blockIdx.x * blockDim.x;

    int lindex = threadIdx.x + radius;

    // Read input elements into shared memory

    temp[lindex] = in[gindex];

    if (threadIdx.x < RADIUS) {

        temp[lindex – RADIUS] = in[gindex – RADIUS];

        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

    }

    // Synchronize (ensure all the data is available)

    __syncthreads();

CUDA: Stencil Kernel

    // Apply the stencil

    int result = 0;

    for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

        result += temp[lindex + offset];

    // Store the result

    out[gindex] = result;

}



• Launching parallel threads

– Launch N blocks with M threads per block with kernel<<<N,M>>>(…);

– Use blockIdx.x to access block index within grid

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;
• Use __shared__ to declare a variable/array in 

shared memory

– Data is shared between threads in a block

– Not visible to threads in other blocks

• Use __syncthreads() as a barrier

– Use to prevent data hazards

CUDA: Review
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• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed

CUDA: Coordination Host and Device



• All CUDA API calls return an error code (cudaError_t)

– Error in the API call itself

OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:

cudaError_t cudaGetLastError(void)

• Get a string to describe the error:

char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

CUDA: Reporting Errors



• Application can query and select GPUs
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
cudaSetDevice(i) to select current device
cudaMemcpy(…) for peer-to-peer copies✝

CUDA: Device Management



CUDA

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__,  blockIdx.x,  threadIdx.x,  <<<>>>

– Manage GPU memory

• cudaMalloc(),  cudaMemcpy(),  cudaFree()

– Manage communication and synchronization

• __shared__,  __syncthreads()

• cudaMemcpy() vs cudaMemcpyAsync(),  cudaDeviceSynchronize()



• The compute capability of a device describes its architecture, e.g.
– Number of registers
– Sizes of memories
– Features & capabilities

• The following presentations concentrate on Fermi devices

– Compute Capability >= 2.0

Compute 
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, atomics 10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P,
concurrent kernels/copies, function pointers, recursion

20-series

CUDA: Capability



– A kernel is launched as a grid of blocks of threads

• blockIdx and threadIdx are 3D

• We showed only one dimension (x)

• Built-in variables:
– threadIdx
– blockIdx
– blockDim
– gridDim

Device

Grid 1
Block
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)

Block
(1,0,0

)

Block
(2,0,0

)

Block
(1,1,0

)
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(0,1,0

)
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CUDA: IDs and Dimension



• Read-only object

– Dedicated cache

• Dedicated filtering hardware

(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

CUDA: Textures



CUDA API Examples ?  



CUDA: Which GPU do I have ?



CUDA: “Timing with CUDA Event API»



CUDA: “Memory Allocations / Copies»



CUDA: “Basic Memory Methods»



CUDA: “Kernel»



CUDA: “Grids, Blocks and Threads»



CUDA: “Thread Indices»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



CUDA: “Matrix Multiplication»



Thank you for your attention !
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