
PARALLEL PROGRAMMING...
By Patrick Lemoine 2023.

Parallel Computing Using CUDA

Programming Interface for parallel computing With CUDA

What is CUDA ?

Concepts

Running in parallel (Blocks)

Introduction Threads

Combining Threads & Blocks (Indexing)

Cooperating Threads (Shared memory)

Managing the device (Asynchronous operation)

API Examples

GOAL

SESSION 4/6

What is CUDA ?

• CUDA Architecture

– Expose GPU parallelism for general-purpose computing

– Retain performance

• CUDA C/C++

– Based on industry-standard C/C++

– Small set of extensions to enable heterogeneous programming

– Straightforward APIs to manage devices, memory etc.

What is CUDA ?

A proprietary platform developed by Nvidia that allows programmers to
write C/C++ code that runs directly on Nvidia GPUs.

It also provides libraries and tools for various domains such as linear
algebra, image processing, deep learning, etc.

CUDA

GPU (Graphics Processing Unit)

A GPU is uses to speed up the process of creating and rendering
computer graphics, designed to accelerate graphics and image
processing.

It is the most important hardware.

But have later been used for non-graphic calculations involving
embarrassingly parallel problems due to their parallel structure.

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

 General Purpose computation using GPU in applications other than 3D graphics
 GPU accelerates critical path of application

 Data parallel algorithms leverage GPU attributes
 Large data arrays, streaming throughput
 Fine-grain SIMD parallelism
 Low-latency floating point (FP) computation

 Applications – see //GPGPU.org
 Game effects (FX) physics, image processing
 Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

What is GPGPU ?

 Scale code to hundreds of cores running thousands of threads

 The task runs on the GPU independently from the CPU

CUDA: Goals

 Threads are grouped into thread blocks

 Blocks are grouped into a single grid

 The grid is executed on the GPU as a kernel

CUDA: Structure

 Blocks map to cores on the GPU

 Allows for portability when changing hardware

CUDA: Scalability

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);
 returns after the copy is complete blocks CPU
 thread doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
 cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice

CUDA: Memory Tranfer

All kernel launches are asynchronous
 control returns to CPU immediately
 kernel starts executing once all previous CUDA calls have completed

Memcopies are synchronous
 control returns to CPU once the copy is complete
 copy starts once all previous CUDA calls have completed

cudaThreadSynchronize()
 blocks until all previous CUDA calls complete

Asynchronous CUDA calls provide:
 non-blocking memcopies
 ability to overlap memcopies and kernel execution

CUDA: Host Synchronization

 Shared memory much much faster than global

 Don’t trust local memory

 Global, Constant, and Texture memory available to
both host and cpu

CUDA: Memory Hierarchy

Global memory not cached on G8x GPUs
 High latency, but launching more threads hides latency
 Important to minimize accesses
 Coalesce global memory accesses (more later)

Shared memory is on-chip, very high bandwidth
 Low latency (100-150times faster than global memory)
 Like a user-managed per-multiprocessor cache
 Try to minimize or avoid bank conflicts (more later)

CUDA: Global and Shared Memory

Texture partition is cached
 Uses the texture cache also used for graphics
 Optimized for 2D spatial locality
 Best performance when threads of a warp read locations that are close together in 2D

Constant memory is cached
 4 cycles per address read within a single warp
 Total cost 4 cycles if all threads in a warp read same address
 Total cost 64 cycles if all threads read different addresses

CUDA: Texture and Constant Memory

 A coordinated read by a half-warp (16threads)
 A contiguous region of global memory:

 64bytes - each thread reads a word: int, float, …
 128bytes - each thread reads a double-word: int2, float2, …
 256bytes - each thread reads a quad-word: int4, float4, …

Additional restrictions:
 Starting address for a region must be a multiple of region size
 The kth thread in a half-warp must access the kth element in a block being read

Exception: not all threads must be participating
 Predicated access, divergence within a halfwarp

CUDA: Coalescing

Coalesced memory accesses Uncoalesced memory accesses

CUDA: Coalescing

 Shared memory is divided into banks
 Each bank has serial read/write access
 Bank addresses are striped
 If more than one thread attempts to access the

same bank at the same time, they’re accesses
are serialized

 This is a bank conflict

CUDA: Bank Conflicts

CUDA Concepts

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CUDA CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

CUDA: Heterogeneous Computing

 Terminology:
 Host The CPU and its memory (host memory)
 Device The GPU and its memory (device memory)

Host Device

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 *

RADIUS];
int gindex = threadIdx.x + blockIdx.x *

blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

// Synchronize (ensure all the data is
available)

__syncthreads();

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ;

offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

void fill_ints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {
int *in, *out; // host copies of a, b, c
int *d_in, *d_out; // device copies of a, b,

c
int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup
values

in = (int *)malloc(size); fill_ints(in, N +
2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N +
2*RADIUS);

// Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

// Copy to device
cudaMemcpy(d_in, in, size,

cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size,

cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/

BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

// Copy result back to host
cudaMemcpy(out, d_out, size,

cudaMemcpyDeviceToHost);

// Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

}

serial code

parallel code
serial code

parallel fn

CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory

PCI Bus

CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,

caching data on chip for performance
3. Copy results from GPU memory to CPU memory

PCI Bus

CUDA: Program

__global__ void mykernel(void) {}

• CUDA C/C++ keyword __global__ indicates a function that:

– Runs on the device

– Is called from host code

• nvcc separates source code into host and device components

– Device functions (e.g. mykernel()) processed by
NVIDIA compiler

– Host functions (e.g. main()) processed by standard host
compiler

• gcc, cl.exe

With device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host code to device code

– Also called a “kernel launch”

– We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!

__global__ void mykernel(void){}

int main(void) {

mykernel<<<1,1>>>();

printf("Hello World!\n");

return 0;

}

Output:

$ nvcc hello.cu
$ a.out
Hello World!
$

CUDA: Program

• Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code
May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

• Simple CUDA API for handling device memory
– cudaMalloc(), cudaFree(), cudaMemcpy()
– Similar to the C equivalents malloc(), free(), memcpy()

CUDA: Memory Management

// Copy inputs to device
cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size,
cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
}

CUDA: Addition on the Device

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

A = 2; b = 7;

__global__ void add(int *a, int *b, int *c)
{

*c = *a + *b;
}

RUNNING IN PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

CUDA: Moving to Parallel

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block
The set of blocks is referred to as a grid
Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c)
{

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

By using blockIdx.x to index into the array, each block handles a different index

On the device, each block can execute in parallel:

CUDA: Vector Addition on the Device

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

CUDA: Vector Addition on the Device

 #define N 512

 int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof(int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c

 // and setup input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks

 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

• Difference between host and device

– Host CPU

– Device GPU

• Using __global__ to declare a function as device code

– Executes on the device

– Called from the host

• Passing parameters from host code to a device
function

• Basic device memory management
– cudaMalloc()
– cudaMemcpy()
– cudaFree()

• Launching parallel kernels

– Launch N copies of add() with
add<<<N,1>>>(…);

– Use blockIdx.x to access block index

CUDA: Review

INTRODUCING THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

• Terminology: a block can be split into parallel threads

• Let’s change add() to use parallel threads instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

CUDA: Threads

#define N 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

CUDA: Vector Addition Using Thread

COMBINING THREADS AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

• We’ve seen parallel vector addition using:

– Many blocks with one thread each

– One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that…

• First let’s discuss data indexing…

CUDA: Combining Blocks and Threads

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

• With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA: Indexing Arrays with Blocks and Threads

• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

 = 5 + 2 * 8;

 = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0

1 3 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

CUDA: Indexing Arrays example

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
}

CUDA: Vector Addition with blocks and Threads

 #define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

CUDA: Addition with Blocks and Threads

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>
(d_a, d_b, d_c);

 / Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

• Update the kernel launch:

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly multiples of blockDim.x

• Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 if (index < n)

 c[index] = a[index] + b[index];

}

CUDA: Handling Arbitrary Vector Sizes

• Launching parallel kernels

– Launch N copies of add() with add<<<N/M,M>>>(…);

– Use blockIdx.x to access block index

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

CUDA

COOPERATING THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

• Consider applying a 1D stencil to a 1D array of elements

– Each output element is the sum of input elements within a radius

• If radius is 3, then each output element is the sum of 7 input elements:
radius radius

CUDA: 1D Stencil

• Each thread processes one output element

– blockDim.x elements per block

• Input elements are read several times

– With radius 3, each input element is read seven times

Implementing Within a
Block

• Terminology: within a block, threads share data via shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

CUDA: Sharing Data Between Threads

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

– Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

CUDA: Implementing with Shared Memory

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] =

 in[gindex + BLOCK_SIZE];

 }

CUDA: Stencil Kernel

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

CUDA: Stencil Kernel

 The stencil example will not work…

 Suppose thread 15 reads the halo before thread 0 has fetched it…

 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex – RADIUS = in[gindex – RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 int result = 0;
 result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

CUDA: Data Race

• void __syncthreads();

• Synchronizes all threads within a block

– Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier

– In conditional code, the condition must be uniform across the block

CUDA: __syncthreads()

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + radius;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex – RADIUS] = in[gindex – RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

CUDA: Stencil Kernel

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

• Launching parallel threads

– Launch N blocks with M threads per block with kernel<<<N,M>>>(…);

– Use blockIdx.x to access block index within grid

– Use threadIdx.x to access thread index within block

• Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;
• Use __shared__ to declare a variable/array in

shared memory

– Data is shared between threads in a block

– Not visible to threads in other blocks

• Use __syncthreads() as a barrier

– Use to prevent data hazards

CUDA: Review

MANAGING THE DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

https://images.app.goo.gl/GJFJkhhSgkL1yCb2A

• Kernel launches are asynchronous

– Control returns to the CPU immediately

• CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed

CUDA: Coordination Host and Device

• All CUDA API calls return an error code (cudaError_t)

– Error in the API call itself

OR

– Error in an earlier asynchronous operation (e.g. kernel)

• Get the error code for the last error:

cudaError_t cudaGetLastError(void)

• Get a string to describe the error:

char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

CUDA: Reporting Errors

• Application can query and select GPUs
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple threads can share a device

• A single thread can manage multiple devices
cudaSetDevice(i) to select current device
cudaMemcpy(…) for peer-to-peer copies✝

CUDA: Device Management

CUDA

• What have we learned?

– Write and launch CUDA C/C++ kernels

• __global__, blockIdx.x, threadIdx.x, <<<>>>

– Manage GPU memory

• cudaMalloc(), cudaMemcpy(), cudaFree()

– Manage communication and synchronization

• __shared__, __syncthreads()

• cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()

• The compute capability of a device describes its architecture, e.g.
– Number of registers
– Sizes of memories
– Features & capabilities

• The following presentations concentrate on Fermi devices

– Compute Capability >= 2.0

Compute
Capability

Selected Features
(see CUDA C Programming Guide for complete list)

Tesla models

1.0 Fundamental CUDA support 870

1.3 Double precision, improved memory accesses, atomics 10-series

2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P,
concurrent kernels/copies, function pointers, recursion

20-series

CUDA: Capability

– A kernel is launched as a grid of blocks of threads

• blockIdx and threadIdx are 3D

• We showed only one dimension (x)

• Built-in variables:
– threadIdx
– blockIdx
– blockDim
– gridDim

Device

Grid 1
Block
(0,0,0

)

Block
(1,0,0

)

Block
(2,0,0

)

Block
(1,1,0

)

Block
(2,1,0

)

Block
(0,1,0

)

Block (1,1,0)

Threa
d

(0,0,0)

Threa
d

(1,0,0)

Threa
d

(2,0,0)

Threa
d

(3,0,0)

Threa
d

(4,0,0)

Threa
d

(0,1,0)

Threa
d

(1,1,0)

Threa
d

(2,1,0)

Threa
d

(3,1,0)

Threa
d

(4,1,0)

CUDA: IDs and Dimension

• Read-only object

– Dedicated cache

• Dedicated filtering hardware

(Linear, bilinear, trilinear)

• Addressable as 1D, 2D or 3D

• Out-of-bounds address handling

(Wrap, clamp)

0 1 2 3
0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

CUDA: Textures

CUDA API Examples ?

CUDA: Which GPU do I have ?

CUDA: “Timing with CUDA Event API»

CUDA: “Memory Allocations / Copies»

CUDA: “Basic Memory Methods»

CUDA: “Kernel»

CUDA: “Grids, Blocks and Threads»

CUDA: “Thread Indices»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

CUDA: “Matrix Multiplication»

Thank you for your attention !

	Slide 1
	Parallel Computing Using CUDA
	Slide 3
	Slide 4
	Slide 5
	GPU (Graphics Processing Unit)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

