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What is CUDA ?

A proprietary platform developed by Nvidia that allows programmers to
write C/C++ code that runs directly on Nvidia GPUs.

It also provides libraries and tools for various domains such as linear
algebra, image processing, deep learning, etc.

Ny * CUDA Architecture
NVIDIA. . .
. — Expose GPU parallelism for general-purpose computing
CUDA

— Retain performance

* CUDA C/C++
— Based on industry-standard C/C++
— Small set of extensions to enable heterogeneous programming

— Straightforward APIs to manage devices, memory etc.




CUDA Device Driver
CUDA Toolkit (compiler, debugger, profiler, lib)

CUDA SDK (examples)
Windows, Mac OS5, Linux

Parallel Computing Architecture

. Libraries CPU/GPU code
Application
nvcc C/C++ Compiler

NVIDIA Assembly Host Assembly
NVIDIA CUDA Compatible GPU
CUDA Runtime and Device Driver

Libraries — FFT, Sparse Matrix, BLAS, RNG, CUSP, Thrust...




GPU (Graphics Processing Unit)

A GPU is uses to speed up the process of creating and rendering
computer graphics, designed to accelerate graphics and image
processing.

It is the most important hardware.

But have later been used for non-graphic calculations involving
embarrassingly parallel problems due to their parallel structure.
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What is GPGPU ?

* General Purpose computation using GPU in applications other than 3D graphics
~  GPU accelerates critical path of application
* Data parallel algorithms leverage GPU attributes
- Large data arrays, streaming throughput
- Fine-grain SIMD parallelism
- Low-latency floating point (FP) computation
* Applications — see //GPGPU.org
- Game effects (FX) physics, image processing

- Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting




CUDA: Goals

Scale code to hundreds of cores running thousands of threads

* The task runs on the GPU independently from the CPU
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CUDA: Structure

Host

Device
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CUDA: Scalability

Multithreaded CUDA Program

* Blocks map to cores on the GPU

w w
GPU with 2 Cores GPU with 4 Cores

* Allows for portability when changing hardware

Core 1 Core 1

Core O Core 2
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CUDA: Memory Tranfer

cudaMemcpy( void *dst, void *src, size tnbytes, enum cudaMemcpyKind direction);
* returns after the copy is complete blocks CPU
* thread doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
* cudaMemcpyHostToDevice
* cudaMemcpyDeviceToHost

* cudaMemcpyDeviceToDevice




CUDA: Host Synchronization

All kernel launches are asynchronous

* control returns to CPU immediately

* kernel starts executing once all previous CUDA calls have completed
Memcopies are synchronous

* control returns to CPU once the copy is complete

* copy starts once all previous CUDA calls have completed
cudaThreadSynchronize()

* blocks until all previous CUDA calls complete
Asynchronous CUDA calls provide:

* non-blocking memcopies

* ability to overlap memcopies and kernel execution




CUDA: Memory Hierarchy

* Shared memory much much faster than global

* Don’t trust local memory

* Global, Constant, and Texture memory available to
both host and cpu




CUDA: Global and Shared Memory

Global memory not cached on G8x GPUs
* High latency, but launching more threads hides latency
* Important to minimize accesses
* Coalesce global memory accesses (more later)

Shared memory is on-chip, very high bandwidth
* Low latency (100-150times faster than global memory)
* Like a user-managed per-multiprocessor cache

* Try to minimize or avoid bank conflicts (more later)




CUDA: Texture and Constant Memory

Texture partition is cached

* Uses the texture cache also used for graphics

* Optimized for 2D spatial locality

* Best performance when threads of a warp read locations that are close together in 2D
Constant memory is cached

* 4 cycles per address read within a single warp

* Total cost 4 cycles if all threads in a warp read same address

* Total cost 64 cycles if all threads read different addresses




CUDA: Coalescing

* A coordinated read by a half-warp (16threads)
* A contiguous region of global memory:
~  64bytes - each thread reads a word: int, float, ...
— 128bytes - each thread reads a double-word: int2, float2, ...
- 256bytes - each thread reads a quad-word: int4, float4, ...
Additional restrictions:
* Starting address for a region must be a multiple of region size
* The kth thread in a half-warp must access the kth element in a block being read
Exception: not all threads must be participating

* Predicated access, divergence within a halfwarp




CUDA: Coalescing

Coalesced memory accesses Uncoalesced memory accesses
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CUDA: Bank Conflicts

Shared memory is divided into banks

* Each bank has serial read/write access

* Bank addresses are striped

* If more than one thread attempts to access the
same bank at the same time, they’re accesses
are serialized

* This is a bank conflict
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CUDA CON

CEPTS

Shared memory

__syncthreads()

Asynchronous operation

Handling errors
Managing devices
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CUDA: Heterogeneous Computing

* Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Device




#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global_ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE +2*
RADIUS];

int gindex = threaddx.x + blockldx.x *
blockDim.x;

int lindex = threadldx.x + RADIUS;

JI Read input elements into shared memory
templlindex] = infgindex];
if (threadldx.x < RADIUS) {

templlindex - RADIUS] = infgindex - RADIUS];

templlindex + BLOCK_SIZE] = infgindex + BLOCK_SIZE];
}

1/ Synchronize (ensure all the data is

available)

__syncthreads();

1/ Apply the stencil

int resuit

for (int offset = -RADIUS ; offset <= RADIUS ;
offset++)

result += temp[lindex + offset];

I/ Store the result
outfgindex] = result;

}
void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}
int main(void) {

int *in, *out; /I host copies of a, b, ¢

int *d_in, *d_out; Il device copies of a, b,
d

int size = (N + 2*RADIUS) * sizeof(int);

JI Alloc space for host copies and setup
values

in = (int *)malloc(size); fill_ints(in, N +
2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N +
2*RADIUS);

I/ Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc(void **)&d_out, size);

Il Copy to device

cudaMemcpy(d_in, in, size,
cudaMemcpyHostToDevice):

cudaMemcpy(d_out, out, size,
cudaMemcpyHostToDevice):

I/ Launch stencil_1d() kernel on GPU
stencil_1d<<<N/
BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

JI Copy result back to host
ccudaMemcpy(out, d_out, size,
cudaMemcpyDeviceToHost);

Jl Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

serial code

parallel fn /

parallel code
serial code




CUDA: Simple Processing Flow

CPU Memory
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1. Copy input data from CPU memory to GPU memory




CUDA: Simple Processing Flow

CPU Memory

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute,
caching data on chip for performance
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CUDA: Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
Load GPU program and execute,
caching data on chip for performance

3.  Copy results from GPU memory to CPU memory




CUDA: Program

void mykernel(void) {}

i

<>
*  CUDA C/C++ keyword indicates a function that: . 6 O.
— Runs on the device =
_ 4w
Is called from host code &

*  nvce separates source code into host and device components

With device COde
— Device functions (e.g. mykernel()) processed by
NVIDIA compiler mykernel<<<1,1>>>();
— Host functions (e.g. main()) processed by standard host
compiler

*  Triple angle brackets mark a call from /ost code to device code
gec, cl.exe — Also called a “kernel launch”

—  We’ll return to the parameters (1,1) in a moment

*  That’s all that is required to execute a function on the GPU!




CUDA: Program

~global  void mykernel(void){}

int main(void) {

mykernel<<<1,1>>>(); Output:
printf(''Hello World!\n");
i
return 0; .5;. $ nvee hello.cu
! =N $ a.out
7% Hello World!
$




CUDA: Memory Management

* Host and device memory are separate entities

pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory
— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalents malloc (), free (), memcpy ()




CUDA: Addition on the Device

~_global  void add(int *a, int *b, int *¢)

{ *c = *a + *b;

}

int main(void) {

int a, b, ¢; // host copies of a, b, ¢
int *d_a, *d_b, *d_c; // device copies of a, b, ¢

int size = sizeof(int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

// Setup input values
A=2;b=7;

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size,
cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<1,1>>>(d_a, d_b,d_c);

// Copy result back to host
cudaMemcpy(&ec, d_c, size, cadaMemcpyDeviceToHost);

// Cleanup
cudaFree(d_a); cudaFree(d b); cudaFree(d c);
return 0;

}




CONCEPTS

__syncthreads()

Asynchronous operation

RUNNING IN PARALLEL
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CUDA: Moving to Parallel

GPU computing 1s about massive parallelism

e' So how do we run code in parallel on the device?

h o add<<<1,1>>>();
: I‘

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel




CUDA: Vector Addition on the Device

With add() running in parallel we can do vector addition
Terminology: each parallel invocation of add() is referred to as a
The set of blocks is referred to as a

Each invocation can refer to its block index using

__global  void add(int *a, int *b, int *¢)

d
}

| ]=a| ]+ b 15

By using to index into the array, each block handles a different index

On the device, each block can execute in parallel:

Block 0 Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[1] =a[1] + b[1]; c[2] = al2] + b[2]; c[3] = a[3] + b[3];




CUDA: Vector Addition on the Device

int main(void) { // Copy inputs to device
int // host copies of a, b, c cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
int *d_a, *d_b, *d_c; //device copies of a, b, ¢ cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
int size = sizeof(int);
// Launch add() kernel on GPU with N blocks
// Alloc space for device copies of a, b, ¢ add<<<N,1>>>(d_a, d_b, d_c);
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size); // Copy result back to host
cudaMalloc((void **)&d _c, size); cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Alloc space for host copies of a, b, ¢ // Cleanup

// and setup input values
cudaFree(d_a); cudaFree(d b); cudaFree(d c);

return 0;




CUDA: Review

*  Difference between host and device * Basic device memory management
CPU — cudaMalloc()
GPU — cudaMemcpy()
— cudaFree()
* Using to declare a function as device code
— Executes on the device *  Launching parallel kernels
— Called from the host — Launch N copies of add() with
add<<<N,1 (...);
*  Passing parameters from host code to a device — Use to access block index
function




Heterogeneous Computing

__syncthreads()

INTRODUCING THREADS s e
-
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CUDA: Threads

* Terminology: a block can be split into parallel

* Let’s change add() to use parallel threads instead of parallel blocks

~global  void add(int *a, int *b, int *¢) {
c[ 1=a[ 1+ bl 15
}

*  Weuse instead of

* Need to make one change in main()...




CUDA: Vector Addition Using Thread

#define N 512 . .
int main(void) { // Copy inputs to device
int *a, *b, *c; // host copies of a, b, ¢ cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
int *d_a, *d_b, *d_c; // device copies of a, b, c cudaMemcpy(d_b, b, size, cadaMemcpyHostToDevice);

int size = N * sizeof(int);
// Launch add() kernel on GPU with N

// Alloc space for device copies of a, b, ¢ add<<<1 N>>>(d_a,d_b,d c);

cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size); // Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
¢ = (int *)malloc(size);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d b); cudaFree(d c);
return 0;




__syncthreads()
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CUDA: Combining Blocks and Threads

*  We’ve seen parallel vector addition using:
— Many blocks with one thread each
— One block with many threads

* Let’s adapt vector addition to use both blocks and threads

*  Why? We’ll come to that...

*  First let’s discuss data indexing...




CUDA: Indexing Arrays with Blocks and Threads

* No longer as simple as using and

— Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x
0|1/2/3/4/5/6|7/0{1]2| 3/ 4|5/ 6™
N v A v J

blockIdx.x = 2 blockIdx.x = 3

*  With M threads/block a unique index for each thread is given by:
int index = threadldx.x + blockldx.x * M;




CUDA: Indexing Arrays example

*  Which thread will operate on the red element?

[o 1123|4567 |8|9|10|11 121314151617181920222324252627282930<">F]

threadldx.x =5

[ 01234=/670123456'\]

v
blockldx.x =2

int index = threadldx.x + blockldx.x * M;
= 5 + 2 *8;
=21;




CUDA: Vector Addition with blocks and Threads

*  Use the built-in variable blockDim.x for threads per block
int index = threadldx.x + blockldx.x * ;

* Combined version of add() to use parallel threads and parallel blocks

~ global  void add(int *a, int *b, int *¢) {
int index = threadldx.x + blocklIdx.x * 5
c[index] = aJindex] + b[index];

}

*  What changes need to be made in main()?




CUDA: Addition with Blocks and Threads

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cadaMemcpyHostToDevice);
// Launch add() kernel on GPU

int main(void) {
int *a, *b, *c; // host copies of a, b, ¢
int *d_a, *d_b, *d_c; //device copies of a, b, ¢

add<<< 7>
int size =N * sizeof(int);

(d_a,d b,d c);

// Alloc space for device copies of a, b, ¢
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);

/ Copy result back to host
cudaMemcpy(c, d_c, size, cuadaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d c);

return 0;

¢ = (int *)malloc(size); !

// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);




CUDA: Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

~_global  void add(int *a, int *b, int *¢, int n) {
int index = threadldx.x + blockldx.x * ;
if (index < n)

c[index] = a[index] + b[index];

* Update the kernel launch:
add<<< JM>>>(d_a,d_b,d ¢, N);




* Launching parallel kernels
— Launch N copies of add() with add<<<N/M,M>>>(...);

— Use to access block index

— Use to access thread index within block

* Allocate elements to threads:

int index = threadldx.x + blocklIdx.x * ;




Shared memory

__syncthreads()

COOPERATING THREADS andalting errors
o
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CUDA: 1D Stencill

* Consider applying a 1D stencil to a 1D array of elements

— Each output element is the sum of input elements within a radius \ ) \ J

radius radius

* Ifradius is 3, then each output element is the sum of 7 input elements:

Implementing Within a
Block

* Each thread processes one output element

— blockDim.x elements per block

* Input elements are read several times

— With radius 3, each input element is read seven times




CUDA: Sharing Data Between Threads

* Terminology: within a block, threads share data via shared memorv

*  Extremely fast on-chip memory, user-managed

* Declare using shared |, allocated per block

* Data 1s not visible to threads in other blocks




CUDA: Implementing with Shared Memory

Cache data in shared memory
— Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
— Compute blockDim.x output elements

—  Write blockDim.x output elements to global memory

— Each block needs a halo of radius elements at each boundary

\ ) \ J

halo on left D halo on right
D o
N Y
g

blockDim.x output elements




CUDA: Stencil Kernel

~global  void stencil_1d(int *in, int *out) {
int temp[BLOCK_SIZE + 2 * RADIUS]J;
int gindex = threadldx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex]; B b D

if (threadldx.x < RADIUS) {
temp[lindex - RADIUS]| = in[gindex - RADIUS]; B L L
temp|[lindex + BLOCK_SIZE] = e o
in[gindex + BLOCK_SIZE];

}




CUDA: Stencil Kernel

// Apply the stencil
result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp|lindex + offset];

// Store the result
out[gindex] = result;

}




CUDA: Data Race

" The stencil example will not work...

"  Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; e e e et e et e et e
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS = in[gindex - RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

int result = 0; EEEEEEEEEEEEEEEE

result += temp[lindex + 1];




CUDA: _ syncthreads()

__syncthreads();

* Synchronizes all threads within a block
— Used to prevent RAW / WAR / WAW hazards

*  All threads must reach the barrier

— In conditional code, the condition must be uniform across the block




CUDA: Stencil Kernel

~global _ void stencil_1d(int *in, int *out) { // Apply the stencil
int temp[BLOCK SIZE + 2 * RADIUS]; int result =0;
int gindex = threadldx.x + blockIdx.x * blockDim.x; for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
int lindex = threadldx.x + radius; result += temp[lindex + offset];

// Read input elements into shared memory // St th It
ore ine resu

temp|lindex] = in[gindex]; out[gindex] = result;
- 2

if (threadIdx.x < RADIUS) {
temp|[lindex — RADIUS] = in[gindex — RADIUSJ; }
temp|lindex + BLOCK_ SIZE] = in|[gindex + BLOCK SIZE]|;

// Synchronize (ensure all the data is available)

0s




CUDA: Review

*  Launching parallel threads
— Launch N blocks with M threads per block with kernel=<<N,M>>>(...);
— Use to access block index within grid

— Use to access thread index within block

. Allocate elements to threads:

* Use to declare a variable/array in

int index = threadldx.x + blockldx.x *
shared memory

— Data 1s shared between threads in a block
— Not visible to threads in other blocks

* Use as a barrier

— Use to prevent data hazards




—
Shared memory

__syncthreads()

Asynchronous operation

MANAGING THE DEVICE
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CUDA: Coordination Host and Device

* Kernel launches are

— Control returns to the CPU immediately

*  CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed




CUDA: Reporting Errors

* All CUDA API calls return an error code ( )
— Error in the API call itself
OR

— Error in an earlier asynchronous operation (e.g. kernel)

*  Get the error code for the last error:
cudaError_t (void)
* Get a string to describe the error:
char * (cudaError _t)

printf(" %s\n", cudaGetErrorString(cudaGetLastError()));




CUDA: Device Management

* Application can query and select GPUs

(int *count)
(int device)
(int *device)
(cudaDeviceProp *prop, int

* Multiple threads can share a device

* Asingle thread can manage multiple devices

(i) to select current device

(..) for peer-to-peer copies’




*  What have we learned?
—  Write and launch CUDA C/C++ kernels

* _ global , blockldx.x, threadldx.x, <<<>>>

— Manage GPU memory
* cudaMalloc(), cudaMemcpy(), cudaFree()
— Manage communication and synchronization

* shared , syncthreads()

* cudaMemcpy() vs cudaMemcpyAsync(), cudaDeviceSynchronize()




CUDA: Capability

* The of a device describes its architecture, e.g.
— Number of registers
— Sizes of memories
— Features & capabilities

Compute Selected Features Tesla models
Capability (see CUDA C Programming Guide for complete list)
1.0 Fundamental CUDA support 870
1.3 Double precision, improved memory accesses, atomics 10-series
2.0 Caches, fused multiply-add, 3D grids, surfaces, ECC, P2P, 20-series
concurrent kernels/copies, function pointers, recursion

* The following presentations concentrate on Fermi devices

— Compute Capability >= 2.0




CUDA: IDs and Dimension

Device

— Akernel is launched as a grid of blocks of threads
* blockldx and threadldx are 3D

* We showed only one dimension (X)

*  Built-in variables:
— threadldx
— blockldx
— blockDim
Threa Threa Threa Threa

— gridDim d d d d
(1,00) (200) (300) (40,0

Threa @ Threa | Threa @ Threa
d d d d
(1,1,0) | (2,1,0) | (3,1,0) | (4,1,0)




CUDA: Textures

* Read-only object
— Dedicated cache

*  Dedicated filtering hardware

(Linear, bilinear, trilinear) -

* Addressable as 1D, 2D or 3D |

*  Out-of-bounds address handling

(Wrap, clamp)




CUDA API Examples ? @j} |
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CUDA: Which GPU do | have ?

#include <stdio.h>
int main()

int noOfDevices;
/* get no. of device */
cudaGetDeviceCount (&noOfDevices);

cudaDeviceProp prop;

for (int i = B; 1 < noOfDevices; i++)

{
/*get device properties */
cudaGetDeviceProperties (&prop, i );

printf ("Device Name:\t %s\n", prop.name);

printf ("Total global memory:\t %ld\n",
prop.totalGlobalMem);

printf ("No. of SMs:\t %d\n",
prop.multiProcessorCount);

printf ("Shared memory / SM:\t %ld\n",
prop.sharedMemPerBlock);

printf("Registers / SM:\t %d\n",
prop.regsPerBlock);

return 1;

Use
cudaGetDeviceCount

cudaGetDeviceProperties

Compilation

> nvcc whatDevice.cu —o whatDevice

Output

Device Name: Tesla C20850
Total global memory: 2B177208328
No. of SMs: 14

Shared memory / SM: 49152
Registers / SM: 32768

For more properties see
struct cudaDeviceProp

For details see CUDA Reference Manual




CUDA: “Timing with CUDA Event API»

int main O

CUDA Event API Timer are,

cudaEvent_t start, stop;
float time;

- OS independent
- High resolution
- Useful for timing asynchronous calls

cudaEventCreate (&start);
cudakventCreate (&stop);

cudaEventRecord (start, @);

cudaEventRecord (stop, @);
cudakventSynchronize (stop); «— ENsures kernel execution has completed

cudaEventElapsedTime (&time, start, stop);

cudaEventDestroy (start);
cudaEventDestroy (stop);

printf ("Elapsed time %f sec\n", time*.001);
eturn 1; : .
s Standard CPU timers will not measure the
timing information of the device.




“Memory Allocations /| Copies»

int main ()

float host_signal[N]; host_result[N]; : .
float *device signal, *device_result; riostand device have separate physical memory

//allocate memory on the device (GPU)
cudaMalloc ((void**) &device_signal, N * sizeof(float));
cudaMalloc ((void**) &device_result, N * sizeof(float));

. Get data for the host_signal array

// copy host_signal array to the device
cudaMemcpy (device_signal, host_signal , N * sizeof(float),
cudaMemcpyHostToDevice);

//copy the result back from device to the host
cudaMemcpy Chost_result, device_result, N * sizeof(float),

cudaMemcpyDeviceToHost);
Cannot dereference

//display the results - -
SRR T T host pointers on device
cudaFree (device_signal); cudaFree (device_result) ; and vice versa




CUDA: “Basic Memory Methods»

cudakrror_t cudaMalloc (void ** devPtr, size_t size)

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to the
allocated memory. In case of failure cudaMalloc() returns cudaErrorMemoryAllocation.

Blocking call

cudakrror_t cudaMemcpy (void * dst, const void * src, size_t count, enum
cudaMemcpyKind kind)

Copies count bytes from the memory area pointed to by src to the memory area pointed to by
dst. The argument kind is one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies the direction of the

copy.

Non-Blocking call

cudakError_t cudaMemcpyAsync (void * dst, const void * src, size_t count,
enum cudaMemcpyKind kind, cudaStream_t stream)

cudaMemcpyAsync() is asynchronous with respect to the host. The call may return before the copy
is complete. It only works on page-locked host memory and returns an error if a pointer to pageable
memory is passed as input.

See also, cudaMemset, cudaFree,




CUDA: “Kernel»

The CUDA kernel is,
Run on device

Defined by __global __ qualifier and does not return anything

__global__ void someKernel ();

Executed asynchronously by the host with <<< >>> qualifier, for example,

someKernel <<<nGrid, nBlocks, sharedMemory, streams>>> (...)
someKernel <<<nGrid, nBlocks>>> (...)

The kernel launches a 1- or 2-D grid of 1-, 2- or 3-D blocks of threads
Each thread executes the same kernel in parallel (SIMT)

Threads within blocks can communicate via shared memory

Threads within blocks can be synchronized

Grids and blocks are of type struct dim3

Built-in variables gridDim, blockDim, threadIdx, blockIdx are used to
traverse across the device memory space with multi-dimensional indexing




CUDA: “Grids, Blocks and Threads»

Grid
Block someKernel<<< 1, 1 >>> ();
% gridDim.x =1
Thread blockDim.x =1
blockldx.x =0
threadldx.x =@
2 dim3 blocks (2,1,1);
% *%% block (0, 0) someKernel<<< (blocks, 4) >>> ();
gridDim.x = 2;
- blockDim.x = 4;
“ﬁ‘ﬂ block (1, 0) blockIdx.x = @,1:
threadldx.x =0,1,2,3,0,1,2,3

<<< number of blocks in a grid, number of threads per block >>>

Useful for multidimensional indexing and creating unigue thread IDs

int index = threadIdx.x + blockDim.x * blockIdx.x;




CUDA: “Thread Indices»

Array traversal

int index = threadIdx.x + blockDim.x * blockldx.x;

blockDim.x = 4 blockDim.x = 4
blockIdx.x =0 blockIdx.x =1
threadldx.x = 0, 1, 2, 3 threadIldx.x = @, 1, 2, 3
Index - E‘: 1, 2: 3 Index =4 5 6,7

[
.
.




CUDA: “Matrix Multiplication»

Matrix-multiplication

Each element of product matrix C is generated by row column multiplication and
reduction of matrices A and B. This operation is similar to inner product of the
vector multiplication kind also known as vector dot product.

A B C
=

(T T[] E u

X [ | —]
]
-
]
o L ] L J
N by N N by N N by N

For size N x N matrices the matrix-multiplication C = A - B will be equivalent to
N2 independent (hence parallel) inner products.




CUDA: “Matrix Multiplication»

Serial representation
double ¢ = 0.0;

&= Eajbj for (int i = @; i < SIZE; i++)
i c += a[i] * b[i];

Simple parallelization strategy

L]
! l l l l l Multiplications are done in parallel
HEEEN

Summation is sequential




CUDA: “Matrix Multiplication»

__global__ void innerProduct (int *a, int *b, int *C)
{
int product[SIZE];

int i1 = threadIdx.x: __global__ wvoid innerProduct (...)

{
if (i < S1ZE)
product[i] = a[i] * b[i]; ;

int main OO

{

innerProduct<<<grid, block>>> (...);

) Called in the host code




CUDA: “Matrix Multiplication»

__global__ void innerProduct (int *a, int *b, int *c)
{
int product[SIZE];

Quallifier __global__ encapsulates
device specific code that runs on the

int i = threadIdx.x; device and is called by the host

if (i < SIZE)

producila] = afi] * b1l T

host__and__device

threadIdx is a built in iterator for
threads. It has 3 dimensions x, y and
¥

Each thread with a unique threadIdx.x
runs the kernel code in parallel.




CUDA: “Matrix Multiplication»

— void innerProduct (int *a, int *b, int *c)

__global_
{
int product[SIZE],;
int i = threadIdx.x;

if (i < SIZE)
product[i] = a[i] * b[i];

Now we can sum the all the products to get

the scalar ¢
int sum = @;
for (int k = @; k < N; k++)
sum += product[k]; ; . ,
¥C = sum; Unfortunately this won't work for following reasons,
} - product[1i] is local to each thread
- Threads are not visible to each other




CUDA: “Matrix Multiplication»

__global__ void innerProduct (int *a, int *b, int *c)
{
__shared__ int product[SIZE]; First we make the product[i] visible to all the
threads by copying it to shared memory
int i = threadIdx.x;
L s SIZ.E) TR D Next we make sure that all the threads are
product[i] = a[i] b[il; synchronized. In other words each thread has
finished its workload before we move ahead. We do
——syncthreads(); this by calling __syncthreads()
if (threadldx.x == @) Finally we assign summation to one thread
{ : (extremely inefficient reduction)
int sum = 0;
for (int k = @; k < SIZE; k++)
sum += product[k];
*C = sum;
}
}

Aside: cudaThreadSynchronize() is used
on the host side to synchronize host and device




CUDA: “Matrix Multiplication»

CPU Version

void matrixMultiplication ( float* A, float* B, float* C, int WIDTH)
{

for (i = © : WIDHT)
for (j - 0@ : WIDTH)

for (k > @ : WIDTH)

ju
o

Ai;

B;;

sum += a * b;




CUDA: “Matrix Multiplication»

GPU Version (Memory locations)
Constant memory

__global__ void matrixMultiplication (%1oat* A, float* B, float* C, int WIDTHb

Shared memory

int 1 /= blockIdx.y * WIDTH + threadldx.y;
int j = blockIdx.x * WIDTH + threadIdx.x;
// each thread computes one element of product matrix C

for (k > 0 : k)

sum += A[i]1[k] * B[k1[3]; Global memory (read)

CLi[5]) = sum;
}  Clobal memory (write)




CUDA: “Matrix Multiplication»

Partial rows and columns are
loaded in shared memory

One row is reused to calculate o
two elements.

Multiple blocks are executed in
parallel. Block/Tile

For a 16 x 16 tile width the ' ;

global memory loads are
reduced by 16.




CUDA: “Matrix Multiplication»




CUDA: “Matrix Multiplication»

__global__ void matrixMultiplication(float* A, float* B, float* C, int WIDTH,
int TILE_WIDTH)
{

__shared__float A_S[TILE_WIDTH][TILE_WIDTH];
__shared__float B_S[TILE_WIDTH][TILE_WIDTH]:

int bx
int £x

blockIdx.x; 1int by
threadldx.x; int ty

blockIdx.y;
threadIdx.y;

Inn

int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float sum = @;

for (int m = @; m < Width/TILE_WIDTH; ++m) {

A_S[tx][ty] = AL(m*TILE_WIDTH + tx)*Width+Row];

B_S[tx][ty] = B[Col*Width+(m*TILE_WIDTH + ty)]1;
__syncthreads();

nn

for (int k = @; k < TILE_WIDTH; ++k)
sum += A_S[tx][k] * B_C[k][ty];
__synchthreads();

3
C [Row*Width+Col] = sum;




C
i)
e

C

O
=

©

| -

-]

@)

>

—
..m

-}

o

>
X

C

©
i
T




	Slide 1
	Parallel Computing Using CUDA
	Slide 3
	Slide 4
	Slide 5
	GPU (Graphics Processing Unit)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

