Mordicus.Core.BasicAlgorithms.SVD module¶
- Mordicus.Core.BasicAlgorithms.SVD.TruncatedSVDSymLower(matrix, epsilon=None, nbModes=None)[source]¶
Computes a truncatd singular value decomposition of a symetric definite matrix in scipy.sparse.csr format. Only the lower triangular part needs to be defined
- Parameters
matrix (scipy.sparse.csr) – the input matrix
epsilon (float) – the truncation tolerence, determining the number of keps eigenvalues
nbModes (int) – the number of keps eigenvalues
- Returns
np.ndarray – kept eigenvalues, of size (numberOfEigenvalues)
np.ndarray – kept eigenvectors, of size (numberOfEigenvalues, numberOfSnapshots)