Mordicus.Modules.Safran.BasicAlgorithms.LPEQP module¶
- Mordicus.Modules.Safran.BasicAlgorithms.LPEQP.CallOptimizer(c, A_ub, b_ub, method, options)[source]¶
Exemple of scipy optimizer wrapper (here linprog)
- Parameters
c (1-D array) – The coefficients of the linear objective function to be minimized.
A_ub (2-D array) – The inequality constraint matrix. Each row of
A_ub
specifies the coefficients of a linear inequality constraint onx
.b_ub (1-D array) – The inequality constraint vector. Each element represents an upper bound on the corresponding value of
A_ub @ x
.method (str, optional) – The algorithm used to solve the standard form problem.
options (dict, optional) – A dictionary of solver options.
- Returns
res – see the class scipy.optimize.OptimizeResult
- Return type
OptimizeResult
- Mordicus.Modules.Safran.BasicAlgorithms.LPEQP.LPEQP(integrationWeights, integrands, integrals, normIntegrals, tolerance)[source]¶
Linear Programming Empirical Quadrature Procedure [1].
- Parameters
integrationWeights (np.ndarray) – of size (numberOfIntegrationPoints,), dtype = float. Weights of the truth quadrature
integrands (np.ndarray) – of size (numberOfIntegrands,numberOfIntegrationPoints), dtype = float. Functions we look to integrated accurately with fewer integration points. Usually, the integrands are already reduced, and numberOfIntegrands is the product of the number of reduced integrand modes and the number of modes of the ReducedOrderBasis
integrals (np.ndarray) – of size (numberOfIntegrands,), dtype = float. High-fidelity integral computed using the truth integration scheme
normIntegrals (float) – np.linalg.norm(integrals), already computed in mordicus use
tolerance (float) – upper bound for the accuracy of the reduced integration scheme on the provided integrands
- Returns
np.ndarray of size (numberOfReducedIntegrationPoints,), dtype = int – indices of the kepts integration points (reducedIntegrationPoints)
np.ndarray of size (numberOfReducedIntegrationPoints,), dtype = float – weights associated to the kepts integration points (reducedIntegrationWeights)
References
[1] M. Yano and A. T. Patera. An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs, 2017. URL: https://www.researchgate.net/publication/323633428_An_LP_empirical _quadrature_procedure_for_reduced_basis_treatment_of_parametrized_nonli near_PDEs.