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Introduction

Fluid-particle interaction : described by the semi-implicit
Immersed Boundary Method.

Particle-particle interaction : characterized by three sub-models :

1. Contact detection algorithm

2. Collision model :
- The particle surfaces are in direct contact.
- Model based on the hard sphere approach.
- Model without numerical parameters, and takes into account
hydrodynamic forces.

3. Lubrication model :
- Distance between particle surfaces very small.
- Constant lubrication force.



Mathematical formulation

Hydrodynamic forces : described by the Navier-Stokes equations.

Particle dynamics : described by Newton’s equations

mp
dup
dt

=

∫
dP

τ · n + Vp(ρp − ρf )(g + fv ) + fc + flub

Ip ·
dΩp

dt
+ Ωp × Ip · Ωp =

∫
dP

R × (T · N) + Mc + Mlub

Fluid definitions :
ρf ∈ R+, density.
τ ∈ M3,3, stress tensor.
T ∈ M3,3, stress tensor in
local frame.
Particle definitions :
P ∈ R3, particle domain.
mp ∈ R+, mass.
Vp ∈ R+, volume.

Particle definitions :
ρp ∈ R+, density.
Ip ∈ R3, moment of
inertia.
up ∈ R3, translational
velocity.
Ωp ∈ R3, angular velocity.
R ∈ R3, vector between
mass center and surface
point.

Forces definition :
g ∈ R3, gravity.
fv ∈ R3, external forces
on fluid.
fc ∈ R3, collision force.
flub ∈ R3, lubrication
force.
Mc ∈ R3, collision torque.
Mlub ∈ R3, lubrication
torque.



Mathematical formulation

Discretized equation for translational velocity :

un
p − un−1

p = (mp + mL)−1∆t{ff + fg + fc + flub + fv}

Discretized equation for angular velocity :

Ωn
p−Ωn−1

p = −(Ip + IL)−1{
∫ n

n−1
Ωp× Ip ·Ωp}+ ∆t(Ip + IL)−1 · {Mf +Mc +Mlub}

Silvio Tschisgale, Tobias Kempe, Jochen Fröhlich. A general implicit direct forcing immersed
boundary method for rigid particles, 2018.



Contact detection algorithm

Boundary point R = (RX ,RY ,RZ ) :
RX = a cos(φ) sin(ϕ),
RY = b sin(φ) sin(ϕ),
RZ = c cos(ϕ),

where a, b, c axis and φ, ϕ azimuthal
and polar angle.

Algorithm properties :
- Iterative method :

ϕj+1 = ϕj +
Deq

a

d j · t jϕ
|d j ||t jϕ|

,

φj+1 = φj +
Deq

a

d j · t jφ
|d j ||t jφ|

,

where tφj , tϕj vectors located at R j ,
tangential to boundary. d j distance
between R j of particles and Deq

equivalent diameter.
- Stopping criterion :

d j · t jφ < δ d j · t jϕ < δ

- Criterion of use :

|xp,1 − xp,2| ≤ a1 + a2 + dlub

- Fast convergence.
- No additional parameters.



Collision model

Starting point of collision model : Time
level tn−1 representing first contact.
Hard-sphere approach : Collision time
is small, so that at time level tn−1 only
the particle velocities change, while
their position and orientation remain
unchanged.
-> Collision force fc can be
approximated by a constant value over
the time interval ∆t.

Aim : Approximate fc to get particle velocities after collision at time level tn.
Step 1 : Considering particle velocities at contact point at time level tn :

un
c = un

p + ωn
p × rc ,

⇒ un
c = un−1

c + uex + (mp + mL)−1pc + (ip + iL)−1 · lc × rc ,

where uex known velocity due to external forces, pc = ∆tfc and
lc = ∆tmc = rc × pc linear an angular momentum due to collision.



Collision model

Step 2 : Determining the value of pc :
The relationship between pc and lc
allows writing :

un
c = un−1

c + uex + K · pc ,

where K a symmetric system matrix. pc
has same magnitude for both particles,
but is directed in opposite direction :

un
c,1 = un−1

c,1 + uex,1 − K1 · pc ,

un
c,2 = un−1

c,2 + uex,2 + K2 · pc .

The difference gives :

pc = (K1 + K2)−1 · (un
r − un−1

r − uex,r ),

un
r = un

c,2 − un
c,1 the relative velocity at contact point.



Collision model

Step 3 : Determining the unknown un
r = un

r,n + un
r,t using Poisson hypothesis :

un
r,n = −ed,nun−1

r,n = −ed,n(un−1
r · n)n

un
r,t = −ed,tun−1

r,t = −ed,t(un−1
r · t)t

Where ed,n, ed,t dry and tangential coefficient of restitution.

Step 4 : Determining particle behavior after contact [3] :
Assuming that particles stick fully after contact, ed,t = 0, the change in relative
velocity and linear momentum get :

∆u = un−1
r − un

r = un−1
r + ed,n(un−1

r · n)n

pc = −(K1 + K2)−1 ·∆u − (K1 + K2)−1 · uex,r

Particles stick after contact :

|pc · t| ≤ µs |pc · n|, µs static coefficient
of friction.
⇒ pc good approximation of collision
response.

Particles slide after contact :

Redefinition of pc using Coulomb law
of friction :

pc = pn(n + µk t), pn = −
∆u · n + uex,r · n

(K1 + K2) · (n + µk t) · n
,

µk kinetic coefficient of friction.



Lubrication model

Lubrication model with constant force flub :

- Ensures that hydrodynamic forces are resolved short time before and after
direct contact, for distances smaller than dlub.

- Constant force avoids uncontrolled variations of flub.

Model for spherical particles :

flub =

{
0 , d > dlub,

−k(Str )
µf ur,n
dlub

( r1r2
r1+r2

)2 , d ≤ dlub,

depending on particles radii, distance dlub,
fluid viscosity, normal relative velocity at
contact point and relative Stokes number :

Str =
ρp
9ρf
|ur,n|
νf

(
r1r2

(r1 + r2)/2

)
Gauss function [4] :

k(Str ) = 125 exp

{
− 1
20000

St2r

}

Model for arbitrary particles :
Particle surfaces are approximated
by a sphere of same curvature using
Gaussian curvature at contact point
R [1] :

G =
1

a2b2c2
[
R2
X

a4 +
R2
Y

b4 +
R2
Z

c4

]2
Radius of Gaussian curvature :

RG =
1√
G

used to replace the particles radii.



Sensitivity analysis

Sensitivity of the model to different quantities for a particle-wall collision :

CFL :
- Rebound trajectories are damped
for larger time steps.
- No differences for CFL ≤ 0.6.
Distance dlub :
- No visible differences.

Spatial resolution :
- Trajectory before and after collision
differs from reference for larger mesh sizes.
- Fluid forces are only marginally captured.
Initial height :
- No visible differences.



Validation

Normal collision of a spherical particle with a wall [5] [4]

The relative Stokes number is varied to analyze
its influence on the restitution coefficient for
normal collision :

en = −|up,n,out ||up,n,in|
,

up,n,in, up,n,out the particle normal velocities
before and after the lubrication zone.

Oblique collision of a spherical particle with a wall [6]

Particles are driven by the acceleration :

g = (g sin(φin),−g cos(φin), 0)T , φin incidence angle.

Comparison of the rebound angle Ψout to the
impact angle Ψin :

Ψin =
|uc,t,in|
|uc,n,in|

,Ψout =
|uc,t,out |
|uc,n,in|



Results

Oblique collision of ellipsoidal particles

For ellipsoidal particles the rebound trajectory
does not only depend on the relative Stokes
number but also on the particle axis a, b, c, the
particle orientation θ and angular velocity.

Rebound trajectories for different θ for oblate ellipsoids, a = b, b
c

= 2 :

a) θ = π
2

b) θ = 4π
9

c) θ = π
3

d) θ = π
4



Results

Normal collision of oblate particles with a wall

Investigation on the dependency of the restitution coefficient as a function of
the relative Stokes number, considering different ratio of particles axis, b

c
:

- Maximum value for normalized restitution coefficient decreases with
increasing ratio b

c
.

- Lubrication forces become larger with increasing flatness of particles ;
increasing radius of curvature.



References for collision models

o Soft sphere collision model :

M.N.Ardekani, P.Costa, W.P.Breugem, L.Brandt. Numerical study of
the sedimentation of spherical particles, 2016.

E.Biegert, B.Vowinckel,E.Meiburg. A collision model for
grain-resolving simulations of flows over dense, mobile, polydisperse
granular sediment beds, 2017.

o Collision model for complex shaped particles :

S.Fukuoka, T.Fukuda, T.Uchida. Effects of sizes and shapes of
gravel particles on sediment transports and bed variations in a
numerical movable-bed channel, 2014.

R.Sun, H.Xiao, H.Sun. Realistic representation of grain shapes in
CFD-DEM simulations of sediment transport with a bonded-sphere
approach, 2017.

o Hertzian contact theory :

S.Ray, T.Kempe, J.Fröhlich. Efficient modelling of particle collisions
using a non-linear viscoelastic contact force, 2015.



References for collision models

o Adaptive collision model :

T.Kempe, B.Vowinckel,J.Fröhlich. On the relevance of collision
modeling for interface-resolving simulations of sediment transport in
open channel flow, 2014.

B.Vowinckel,R.Jain,T.Kempe,J.Fröhlich. Entrainment of single
particles in a turbulent open-channel flow : a numerical study, 2016.

o Multi-collision model :

S.Tschisgale,L.Thiry,J.Fröhlich. A constraint-based collision model
for Cosserat rods, 2018.
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