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We numerically study the drafting, kissing and tumbling (DKT) phenomenon of two non-identical circu-
lar particles sedimenting in a two-dimensional infinite channel by using the lattice Boltzmann equation
with a multiple-relaxation-time collision model. The main emphasis of this work is to investigate the
effect of the longitudinal distance and diameter ratio between two particles on the flow pattern during
sedimentation. The method is first validated by simulating the sedimentation of one single particle
and two identical particles. For two particles with different sizes, two cases are considered: in Case-1,
the larger particle is initially located above the smaller one; in Case-2, the smaller particle is initially
above the larger one. The simulation results are compared with the case of two equal-sized particles.
The results show that two particles with different sizes are easier to separate than two identical ones.
In particular, the effects of initial longitudinal distance (Dh) and diameter ratio on the occurrence of
the DKT process are studied in detail. With changing these two parameters, the results reveal the tran-
sitions between the DKT phenomena. It is shown that the DKT process can take place (only once) regard-
less of any value of Dh in Case-1, while in Case-2, the two particles will never undergo the DKT process
when increasing Dh beyond a certain threshold. The results also show that, as the particle diameter ratio c
is increased starting from 1, in Case-1 the two particles will interact by undergoing two transitions of the
DKT phenomena: from the repeated to the one-off DKT process, while in Case-2 there exists an additional
mode: the gap increases continuously from the start.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Sedimentation of particles in a viscous fluid occurs in a variety
of natural and industrial applications, such as fluidization, the
petroleum and paper industries, and blood flows. This subject
has attracted much attention in theoretical and experimental stud-
ies for many years, and a variety of numerical methods have been
developed and used to study particle–fluid systems.

As an alternative computational approach for the Navier–Stokes
(NS) equations, the lattice-Boltzmann method (LBM) [1–5] has also
been shown to be an effective tool for simulating particulate
suspensions. In this method, the fluid behavior is described by a
mesoscopic model based on the discrete Boltzmann equation
which is marched explicitly in time according to simple rules. It
has been shown that through a multi-scaling analysis, the NS equa-
tions can be recovered. The application of LBM to particle–fluid
suspensions was first presented by Ladd [1,2], who proposed a
modified bounce-back rule to account for the boundary velocity
of a moving particle. The flow field and the solid particle are repre-
sented by a fixed uniform grid system, and the hydrodynamic force
and torque on the particle are calculated based on a simple
momentum exchange method, whose motion and rotation are
determined by the Newtonian dynamics. This method provides a
fast and efficient simulation of solid–fluid suspension flow. Since
then, the LBM has become a popular tool for simulating particulate
flows [6–10].

In particulate flows, fundamental mechanisms of fluid-particle
and particle–particle interactions are very important for accurately
predicting the flow behaviors. The sedimentation of two circular
particles serves as the simplest problem to study these two types
of interactions, and many experimental and numerical studies
have been carried out to investigate the behavior of sedimentation
of circular particles. Fortes et al. [11] observed experimentally that
in the sedimentation of two particles in a Newtonian fluid inside a
vertical channel, the two particles would undergo the drafting,
kissing and tumbling (DKT) phenomenon. Theoretical investigation
of hydrodynamic interactions between two particles can be found
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in Refs. [12,13]. Based on a finite element method (FEM), Feng et al.
[14] simulated the motion of circular particles sedimenting in a
vertical channel and successfully predicted the DKT phenomenon.
They also analyzed the fluid-particle, particle–wall and particle–
particle interactions. With a finite volume method, Ritz and Caltag-
irone [15] numerically simulated the motion of settling particles in
two dimensions and also predicted the DKT phenomenon. Some
modifications of the distributed Lagrange multiplier-based ficti-
tious domain method (DLM) for dynamical simulation of fluid-par-
ticle suspensions can also be found in the literatures [16–18].
Using the LBM, earlier attempts to simulate the sedimentation of
two circular particles had fully reproduced the DKT process [5],
where the motion of solid particles were succinctly analyzed. Re-
cently, a number of hybrid methods have been developed in which
the LBM is coupled with other methods, such as the immersed
boundary method (IBM) [9], Discrete Element Method [19], and
FEM [20] to simulate particle suspensions.

The sedimentation process of two particles is significantly influ-
enced by a number of intrinsic factors, such as particle density,
shape and surface properties. But in most cases, the particle size
and density plays the dominant role in the real engineering appli-
cations. So far, most of numerical studies of interactions between
two sedimenting particles concentrate on uniform particle sizes.
The attention paid to the effect of diameter ratio on particle motion
and interactions is very limited. Mukundakrishnan et al. [21]
numerically investigated the motion of two particles in a finite
fluid-filled rotating cylinder. They also considered the particle size
and density effect on the flow behaviors. Shao et al. [22] simulated
the sedimentation of two circular particles with different sizes
using the DLM/Fictitious Domain method. The effect of diameter
ratio on the interaction of two sedimenting circular particles was
studied. They discovered that for small diameter ratio (below
1:111), the two particles would undergo the DKT process repeat-
edly and the frequency increased as the diameter ratio decreased,
while enlarging the diameter ratio to some values, the two parti-
cles would separate after their tumbling. In addition, they found
that the influence of interactions on the motion of the small parti-
cle was more stronger than that of the large particle. However, it is
noticed that their analysis was restricted to a fixed configuration in
the channel, and the study is not enough to reveal the mechanism
of the interactions of two sedimenting particles with different
sizes. A more detailed study on the effect of diameter ratio would
be required. To our knowledge, few attention have been paid to
this issue. Therefore, the main focus of our present effort is to
investigate the effects of size ratio on the sedimentation of two cir-
cular particles. In this paper, we will conduct a systemic investiga-
tion on this problem by using the LBM. We intend to understand
the mechanisms for the behavior of two particles induced by the
fluid-particle and particle–particle interactions together with the
particle–wall interactions by considering the difference in size
and initial position of the particles.

Up to now, the lattice Bhatnagar-Gross-Krook (LBGK) model is
the most popular LBM used in particulate flows for its simplicity.
However, this model has some shortcomings. For instance, the
BGK model may suffer from numerical instability when simulating
fluids with relatively low viscosities [23–25]. In view of the defect
inherent in the BGK model, the multiple-relaxation-time (MRT)
model [23,24,26] has been proposed recently to simulate particu-
late flows [27–29]. More importantly, the MRT model can achieve
better accuracy and robustness than the BGK model in particulate
flows [29]. Therefore, the present numerical simulations are con-
ducted with the MRT model. The rest of the paper is organized as
follows. Section 2 gives a brief review of the MRT LB model. The
code is first validated by comparing the present results with the
existing results for the sedimentation of two identical particles in
an infinite channel in Section 3. With reference to the results of
two identical particles, the effect of size ratio and initial longitudi-
nal distance between two non-identical particles on their interac-
tions are subsequently studied at two types of initial
configurations. Finally, some concluding remarks are presented in
Section 4.

2. Numerical method

So far, the LBM has been well-documented for simulations of
particles suspended in fluid, and many variants of this method
can be found in the review paper [8]. In this section, we will pro-
vide a brief overview of two-dimensional MRT lattice Boltzmann
equation (LBE) model used in our simulations.

2.1. Multiple-relaxation-time lattice Boltzmann method

For the two-dimensional MRT model with nine velocities (D2Q9
model), the evolution of MRT-LBE can be expressed as [23,24,26],

f ðxj þ cdt; t þ dtÞ � f ðxj; tÞ ¼ �M�1S mðxj; tÞ �mðeqÞðxj; tÞ
� �

; ð1Þ

where

f ðxjþcdt ;tþdtÞ¼ f0ðxj;tþdtÞ;f1ðxjþc1dt ;tþdtÞ;. . . ;f8ðxjþc8dt ;tþdtÞ
� �T

;

f ðxj;tÞ¼ðf0ðxj;tÞ;f1ðxj;tÞ; . .. ;f8ðxj;tÞÞT

are 9-dimensional vectors of the discrete distribution functions
ffiji ¼ 0;1; . . . ;8g, in which fiðxj; tÞ is the fluid distribution function
for particle moving with discrete velocity ci at time t and position
xj. m and mðeqÞ are 9-dimensional vectors of velocity moments of
the distribution functions f and their equilibria, respectively. M is
a 9� 9 matrix which linearly transforms the distribution functions
to their moments,

m ¼M � f ; f ¼M�1 �m;

and S is a non-negative 9� 9 diagonal relaxation matrix. dt is the
time step, and the discrete velocity set fciji ¼ 0;1; . . . ;8g in the
D2Q9 model is

ci ¼
ð0;0Þ; i ¼ 0;
cos ði� 1Þp=2½ �; sin ði� 1Þp=2½ �ð Þc; i ¼ 1� 4;

cos ð2i� 1Þp=4½ �; sin ð2i� 1Þp=4½ �ð Þ
ffiffiffi
2
p

c; i ¼ 5� 8;

8><
>: ð2Þ

where c ¼ dx=dt is the lattice speed, and dx is the lattice cell width.
Corresponding to the above nine-velocity LBE model, we can ar-

range the components of the moment vector in the following
order:

m ¼ ðq; e; e; jx; qx; jy; qy; pxx;pxyÞ
T
;

where q is the fluid density, e and e are related to the total energy
and the energy square, jx ¼ qux and jy ¼ quy are x and y components
of the momentum, respectively; qx and qy are related to the x and y
components of the energy flux, and pxx and pxy are the symmetric
and traceless components of the stress tensor, respectively. The
equilibrium moments of m can be written accordingly as

mðeqÞ ¼ ðq; eðeqÞ; eðeqÞ; jx; q
ðeqÞ
x ; jy; q

ðeqÞ
y ;pðeqÞ

xx ; pðeqÞ
xy Þ

T
; ð3Þ

where the density q and the momentum j ¼ qu are the conserved
moments. The equilibria of the non-conserved moments in (3) are
functions of the conserved moments, which are defined by [23,24],

eðeqÞ ¼ qð�2þ 3u2
x þ 3u2

yÞ; ð4aÞ

eðeqÞ ¼ �q �1þ 3u2
x þ 3u2

y

� �
; ð4bÞ

qðeqÞ
x ¼ �qux; qðeqÞ

y ¼ �quy; ð4cÞ
pðeqÞ

xx ¼ qðu2
x � u2

yÞ; pðeqÞ
xy ¼ quxuy: ð4dÞ
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With the ordering of discrete velocities and moments specified
above, the transforation matrix M is given by [23]

M ¼

1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð5Þ

Note that the mass and monmentum do not change before and after
the collision. Therefore, the diagonal relaxation matrix is given by

S ¼ diagð0; s1; s2;0; s4;0; s5; s6; s7; s8Þ; ð6Þ

where the non-negative relaxation rates can affect the stability of
the model [23,24], and must be be chosen in the range 0 < si < 2
to satisfy the stability condition for non-conserved moments.

The density q and velocity u of the fluid are determined by

q ¼
X

i

fi; qu ¼
X

i

cifi: ð7Þ

With the aid of the Chapman-Enskog expansion, the Navier–Stokes
equations can be recovered from the LBE of (1) in the low Mach
number limit, with the shear viscosity m and the bulk viscosity f
being given by

m ¼ c2
s

1
s7
� 1

2

	 

dt ; f ¼ c2

s
1
s1
� 1

2

	 

dt: ð8Þ

where cs ¼ c=
ffiffiffi
3
p

is the speed of sound. In MRT model, c is usually
set to be unity. In addition, it is required that s7 ¼ s8 and s4 ¼ s6.

It should be noted that when all the relaxation rates equal to
1=s, where s is the relaxation time in BGK model, the MRT model
will reduce to the BGK counterpart, of which the equilibrium dis-
tribution function (EDF) f ðeqÞ

j ðx; tÞ are defined by the fluid density
q and velocity u,

f ðeqÞ
i ¼ xiq 1þ ci � u

c2
s
þ ðci � uÞ2

2c4
s
� u2

2c2
s

" #
; ð9Þ

where xi is the weighting factor which is given by
x0 ¼ 4=9;x1�4 ¼ 1=9;x5�8 ¼ 1=36, and the sound speed is
cs ¼ c=

ffiffiffi
3
p

. In this model, the fluid viscosity is computed by
m ¼ c2

s s� 1=2ð Þdt .
The evolution process of MRT-LBE consists of two steps, i.e., the

collision step and the streaming one. The collision step is first exe-
cuted in the moment space and then mapped to the velocity space,

m�ðx; tÞ ¼ mðx; tÞ � S mðx; tÞ �mðeqÞðx; tÞ
� �

;

f �ðx; tÞ ¼M�1m�ðx; tÞ: ð10Þ

while the streaming step is still implemented in velocity space,

fiðxþ cidt ; t þ dtÞ ¼ f �i ðx; tÞ: ð11Þ
2.2. Boundary conditions for fluid-particle interaction

In LBE for particulate flows, boundary conditions at the surface
of a moving particle is an important topic, and some different
schemes has been proposed in the literature. As one of the most
notable contributions, Ladd [1] and Ladd and Verberg [8] devel-
oped an efficient and simple method to treat the boundary condi-
tion on the particle–fluid interface. In this method, a fixed regular
grid system is used to represent the solid particle in addition to the
flow field. The interior of the suspended particle is filled with the
fluid, and the fluid can pass through its boundary. Such an assump-
tion can bring facilitation to the computations since the fluid nodes
both inside and outside the particle can be treated in the same
manner as the particle moves on the meshes.

On the other hand, the surface of a particle in Ladd’s method is
represented by some boundary nodes defined as the midpoints be-
tween the neighboring fluid and solid nodes. This arrangement
causes the real particle boundary to be replaced by a series of stair-
wise segments, which results in the distortion of the geometry and
degrades the computational accuracy. One improvement on the
representation of the particle boundary is to adopt the curved
boundary condition [30]. Due to the uniform treatment for the
boundary condition, we choose the interpolation scheme proposed
by Yu et al. [31] for the curved boundary condition. In this interpo-
lation scheme, the no-slip boundary on the particle surface is
implemented by a bounce-back rule [1,8]:

fi0 ðxb; t þ dtÞ ¼ f �i ðxb; tÞ � 2xiq
ci � ub

c2
s

; ð12Þ

where xb is the boundary node at the solid surface with velocity
ub; ci0 ¼ �ci denotes the reflection direction and ci the incident
direction. As in the method of Ladd, the inner of the particle is filled
with the fluid as the particle moves, and the fluid can cross over the
particle boundary.

As reported in some published works [32–34], through the
bounce-back rule, the no-slip boundary condition is not always
satisfied at one half nodes between the neighboring fluid and solid
nodes. In the BGK model, the accurate boundary location depends
on the fluid viscosity when the bounce-back is applied to the
Poiseuille and Couette flows. While using the MRT-LBE model, this
problem can be overcome by a proper choice of the relaxation
parameters as the following [25,32]:

s4 ¼ s6 ¼ 8
ð2� s8Þ
ð8� s8Þ

; ð13Þ

and the no-slip boundary condition is satisfied at one half grid spac-
ing of the last fluid node [35]. Therefore, we will follow this theoret-
ical result to determine the relaxation rates in our simulations.

In LBE for simulations of particle suspensions, the calculation of
the hydrodynamic force exerted on a solid particle is another
important issue. The momentum-exchange method [1,6,36] and
the stress-integration method [37,38] are two fundamental meth-
ods, and have been examined in the literature. In the following
simulations, the momentum-exchange method will be chosen for
its simplicity and accuracy. At each lattice node xf nearest neigh-
boring a boundary node xb, the force exerted by the fluid on the so-
lid particle results from the momentum exchange (per unit time)
between the incident direction ci and the reflection direction ci0

of xf

Fiðxf ; tÞ ¼
d2

x

dt
cif �i ðxf ; tÞ � ci0 fi0 ðxf ; t þ dtÞ
� �

: ð14Þ

After summing over all nearest lattice nodes neighboring all bound-
ary nodes and all relevant directions for each boundary node, the
total hydrodynamic force F t and torque T t on the solid particle
can be obtained as

Ft ¼
X

xf

X
i

F iðxf Þ; T t ¼
X
xb ;xf

X
i

ðxb � RÞ � F iðxf Þ; ð15Þ

Once F t and T t on the solid particle are calculated, the transla-
tional velocity up and the angular velocity Xp of the particle are
determined by Newton’s law as follows:

Mp
dup

dt
¼ F t; Ip

dXp

dt
¼ T t; ð16Þ
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where Mp and Ip are the mass and the moment inertia of the parti-
cle, respectively. For the numerical computations of these two
equations, the first-order Euler method is executed in our simula-
tions to update the translation and rotation of the particle at each
time step:

unþ1
p ¼ un

p þ dtF t=Mp; ð17Þ

and

Xnþ1
p ¼ Xn

p þ dtT t=Ip: ð18Þ

After each time step, the position of particle xp is updated by inte-
grating the velocity with the following scheme:

xnþ1
p ¼ xn

p þ un
pdt þ

1
2

d2
t Ft=Mp; ð19Þ
2.3. Particle–particle and particle–wall interactions

If a massive amount of particles exist in a container, particles
regularly approach within one lattice unit of each other or the wall
under certain circumstances. When no fluid nodes exist for imple-
menting the momentum exchange, the above force calculation will
break down. In addition, the particles can interpenetrate each
other or the wall in numerical simulations since the distances be-
tween them can become very small if no precautions are adopted.
It is also noted that numerical errors may lead to such overlap in
numerical calculations. In order to avoid those unphysical phe-
nomena, we can introduce some short-range repulsive forces when
the gap of the particle–particle or the particle–wall is less than a
given threshold. In this work, we adopt the collision model pro-
posed by Wan and Turek [39]. For the particle–particle collisions,
the repulsive force is given by

FP
i;j ¼

0; di;j > Ri þ Rj þ n;
1
e0

P
ðXi � XjÞðRi þ Rj � di;jÞ; di;j 6 Ri þ Rj;

1
eP
ðXi � XjÞðRi þ Rj þ n� di;jÞ2; Ri þ Rj 6 di;j 6 Ri þ Rj þ n;

8>><
>>:

ð20Þ

where Ri and Rj are the radii of the ith and jth particles, Xi and Xj are
their centers, di;j ¼ jXi � Xjj is the distance between the centers, n is
the threshold which is set to be one lattice spacing in the present
work, e0P and eP are two small positive stiffness parameters for par-
ticle–particle collisions and they are set to be 1:0� 10�7 in our sim-
ulations. Similarly, for the particle–wall collisions, the repulsive
force is given by

FW
i ¼

0; d0i > 2Ri þ n;
1
e0W

Xi � X 0i
� �

2Ri � d0i
� �

; d0i 6 2Ri;

1
eW

Xi � X 0i
� �

2Ri þ n� d0i
� �2

; 2Ri 6 d0i 6 2Ri þ n;

8>><
>>: ð21Þ

where X0i is the coordinate vector of the center of the nearest imag-
inary particle located on the boundary and d0i ¼ jXi � X0ij; e0W and eW

are two stiffness parameters which are set to be e0W ¼ e0P=2 and
eW ¼ eP=2 in the calculations. It should be pointed out that the sup-
plementary force of particle collision, Fcol

i ¼ FP
i;j þ FW

i , is regarded as
an external force added to the total force acting on the i-th particle.

3. Results and discussion

3.1. Code validation

In this section, we will validate our lattice Boltzmann code by
comparison with the existing results for the sedimentation of
circular particle in Newtonian fluid. The sedimentation of one
circular particle in a channel is used as the first test problem. The
computational domain is inside in a channel of W ¼ 2 cm width
and H ¼ 6 cm height. A rigid circular particle with diameter
D ¼ 0:25 cm and density qp ¼ 1:25 g=cm3 is initially located
at (1 cm, 4 cm). The density and viscosity of the fluid are
qf ¼ 1:0 g/cm3 and l ¼ 0:1 g/(cm s). At time t ¼ 0, the fluid and par-
ticle are at rest. Under the gravity (the accelerating velocity
g ¼ 980 cm/s2), the particle will be dragged to fall down. A uniform
grid of 201� 601 is used for the simulation. The values of the relax-
ation rates are given as follows: s0 ¼ s3 ¼ s5 ¼ 0; s1 ¼ 1:1; s2 ¼
1:25; s7 ¼ s8 ¼ 1=s, and s4 ¼ s6 ¼ 8ð2� 1=sÞ=ð8� 1=sÞ. Fig. 1 show
the time evolution of some quantities of the particle, including the
vertical position and vertical velocity of the particle, Reynolds num-

ber Re ¼ qpD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

p þ v2
p

q
=l, and translational kinetic energy

Et ¼ 0:5Mp u2
p þ v2

p

� �
;up and vp denote the two components of parti-

cle velocity, Mp is the mass of the particle. For comparison, other
published results [39,40] for the same problem are also shown in
the figure. Clearly, good agreement between these results can be ob-
served. For the small difference seen in the figure after the particle
touches the bottom, it is attributed to the difference in the numerical
methods and the particle–wall treatments in the calculations.

The second test problem is the sedimentation of two circular
particles in a channel, whose schematic is shown in Fig. 2. This
problem has been extensively studied by many authors, and the
conditions used here are the same as those presented by Jafari
et al. [41] for comparison: The computation domain is
W � H ¼ 2 cm� 8 cm; The density and viscosity of the fluid are
qf ¼ 1:0 g/cm3 and l ¼ 0:01 g/(cm s), respectively. The particle
density is qp ¼ 1:01 g/cm3, and the diameter is D ¼ 0:2 cm. Ini-
tially, the two particles are located at the channel centerline with
a height of 7:2 cm and 6:8 cm, respectively. Both particles and flow
are set to be rest at t ¼ 0, and then the two particles commence
their motion downward under the gravity force. In our simulations,
the normal derivative of velocity is assumed to be zero at the out-
flow boundary, and no-slip boundary conditions are applied to the
left and right walls. The non-equilibrium extrapolation scheme
[42] is adopted here to treat the inlet and outlet boundary condi-
tions. For convenience of description, the upper and lower particles
are labeled as ‘‘Particle 1’’ (or P1) and ‘‘Particle 2’’ (or P2),
respectively.

It is known that the two particles would undergo the DKT pro-
cess when they move close to each other. Fig. 3(a)–(d) show the
instantaneous vorticity at different times during the sedimenta-
tion. The simulation is conducted with a uniform grid of
250� 1000 nodes and the relaxation time s ¼ 0:65. From the fig-
ure, we can see that the DKT phenomenon is successfully repro-
duced. Before proceeding to comparison with previous numerical
results, we investigate the grid effect on numerical results obtained
by the present method. To this end, we also conducted another two
simulations using 200� 800 and 300� 1200 grid meshes, and the
instantaneous horizontal and vertical positions of the two particles
with three different meshes are plotted in Fig. 4. As the grid reso-
lution is refined, one can clearly observe from the figure that the
results under the 250� 1000 and 300� 1200 grids are consistent
with each other, which demonstrates the consistent grid conver-
gence of our used method. Based on this, we will use 25 lattice
units to represent the particle in the following simulations. In addi-
tion, we would like to point out that if the relaxation rates s4 (and
s6) are not chosen according to Eq. (13), no grid-independent re-
sults can be obtained.

Fig. 4 also includes the results of Jafari et al. [41], which are
computed by the LBM with a smoothed-profile method. As can
be observed, the results of the two methods are in good agreement
overall with each other. The tiny differences shown in the figure
during tumbling and subsequent separation processes can be



Fig. 1. Time history of the vertical position (a), vertical velocity (b), Reynolds number (c) and translational kinetic energy (d) of the particle during sedimentation.

Fig. 2. Schematic of two circulate particles settling under gravity in an infinite
channel.

Fig. 3. Contours of vorticity at four time instants during sedimentation of two
circular particles: (a) t ¼ 1:5 s; (b) t ¼ 1:8 s; (c) t ¼ 2:5 s; (d) t ¼ 3:5 s.
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attributed to the different particle–particle collision strategies in
the present method and that in Ref. [41].

For better understanding of the DKT motion, we also measure
the time development of three distances between two particles,
i.e., the difference of transverse coordinates (Dx) and longitudinal
coordinates (Dy) of the two particle centers, and the gap between

the two surfaces Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
� D. As shown in Fig. 5, Particle

1 initially trails Particle 2 and a steady gap of about 0:2 cm be-
tween them keeps up for about t ¼ 0:7 s. Thereafter, the trailing
particle moves faster than the leading one, and they start to ap-
proach closer. This stage of motion is called ‘‘drafting’’. After this,
the two particles almost touch each other at approximately
t ¼ 1:4 s, which implies that they enter the ‘‘kissing’’ stage of the
motion. At this time, the gap Dr between the particles is approxi-
mately equal to zero (actually the gap is about one lattice spacing
due to the collision model used). Following the kissing regime, the
two particles start to slowly deviate from the channel center, and
they fall together with decreasing Dy until they completely tumble
at time t ¼ 2:1 s. Although each difference of the transverse and
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Fig. 5. Time history of the distances between two particles.
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longitudinal positions between the two particles exhibits a rela-
tively obvious variation during the ‘‘tumbling’’ stage, it is noted
that the gap remains to be unchanged (Dr � 0), which implies
the two particles are still in close contact with each other. Subse-
quent to this process, the two particles begin separating and
throwing apart, and then distance themselves from each other.
We would like to note that such similar phenomena were also ob-
served in previous works [9,27]. In what follows, the three param-
eters (Dx;Dy;Dr) will be employed to analyze the interrelated
motions between the two particles.

3.2. Sedimentation of two particles with different sizes

In this section, we investigate the hydrodynamic interactions of
two circular particles with different sizes which sediment in an
infinite channel. Particularly, the size effect of the particle pairs
and the effect of initial longitudinal distance on their interactions
will be investigated by comparison of the results for two identical
particles in size. For two non-identical particles with different ra-
dii, two different configurations are considered with respect to
the initial position, i.e., Case-1: the larger particle is located above
the smaller particle, and Case-2: the smaller particle is above the
larger one. Correspondingly, the case of two identical particles is
denoted by Case-0. In the following, we will make comparisons
of the interactions between two particles in Case-0 and Case-1,
as well as Case-0 and Case-2. In addition, comparisons of numerical
results between Case-1 and Case-2 are also included.

To investigate the effect of particle size ratio, c ¼ D1=D2, where
D1 and D2 are respectively the diameter of the larger particle and
the smaller one, numerical simulations are performed by fixing
the diameter of the larger particle at D1 ¼ 0:2 cm while varying
the diameter of the smaller one. As demonstrated by Ladd [1,2]
and Feng and Michaelides [43], accurate results can be achieved
provided that the diameter of a particle is chosen to be greater than
20 lattice units. In our simulations, the smaller particle is covered
by 25 lattice units while changing its diameter in our simulations.
Unless otherwise specified, the other computational conditions are
the same as those for two particles in the previous section.

To simulate an infinite channel, a moving computational do-
main is used during the simulations, where the upstream boundary
is always 10D1 ahead of the particle, whereas the downstream
boundary is 15D1 from the particle. The technique is briefly de-
scribed as follows: If one of the two particles moves downward
by one lattice unit, one layer of fluid nodes at the downstream side
is removed from the grid system and one layer of lattice nodes is
added to the upstream side. In addition, to avoid the particle mov-
ing out of the computational domain, the height of the computa-
tional domain is extended to be H ¼ 18 cm. In our discussions,
two kinds of Reynolds numbers based on the velocity and diameter
of the particle will be used, i.e.,

Instantaneous Reynolds number Rei
a ¼ qf UaDi=l

Terminal Reynolds number Rei
t ¼ qf UtDi=l

where Di is the diameter of particle i, and Ua and Ut are the settling
velocity and terminal velocity of the particle, respectively.

3.2.1. Case 1. The larger particle above the smaller one
We now investigate the case of two different-sized particles, of

which the larger one (P1) is initially set above the smaller one (P2).
The diameter ratio c is first set to be 2 (i.e., D2 ¼ 0:1 cm). The two
particles are released from rest with an initial gap of Dh ¼ 0:4 cm.
The locations are at heights of 15:0 cm and 14:6 cm in the channel,
respectively.

Fig. 6 shows the positions and velocities of the two particles. For
comparison, the results of two identical particles are also shown.
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The comparison of angular velocities of two particles are shown in
Fig. 7. Henceforth, horizontal position will be normalized by W,
vertical position normalized by H, time by tr with tr ¼

ffiffiffiffiffiffiffiffiffi
H=g

p
,

velocity by ur with ur ¼
ffiffiffiffiffiffiffi
Hg

p
, angular velocity by 2p=tr , and dis-

tance between the two particles by D1 in this work, unless other-
wise specified. From Fig. 6ðaÞ and ðcÞ we can observe that after a
time period of settling along the vertical direction, the particles
with different sizes start deviating from their initial position to
the right side at t� ¼ t=tr � 12:39, while the two equal particles
do not deviate towards right until t� � 27:3. This implies that in
the case of two non-identical particles P1 sediments more rapidly
than P2 from the start. Notice that the two particles in these two
cases have been in close contact with each other respectively at
these two time points. Meanwhile, the two particles with different
sizes begin to rotate in opposite directions. Specifically, in the case
of two non-identical particles the initial leading one (P2) rotates
with a higher angular velocity than the trailing one (P1) (see
Fig. 7). After the leading particle changes to rotate in another direc-
tion, its angular velocity tends to approach zero together with the
trailing particle. It is worth mentioning that the phenomenon for
two equal-sized particles is similar to that observed by Qi [5]
where the two particles are initial aligned at x ¼ 0:25W . It can be
also observed from Fig. 6ðdÞ that at the early stage the larger
particle moves faster than the smaller one, while in the case of
two equal-sized particles the two particles move with almost the
same velocity. Also, this indicates that when compared with the
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case of two equal-size particles, the larger particle (the trailing par-
ticle) will be earlier to be influenced by the low pressure in the
wake of the smaller particle (the leading particle). The drag which
the larger particle experiences will decrease due to the wake effect
behind the smaller one, and thus the larger particle can accelerate
downward. As a result, the time when the two non-identical parti-
cles start to undergo the DKT process, especially the kissing state
would be ahead of that for two identical particles, as clearly shown
in Fig. 6ðbÞ and ðdÞ.

To further support the above statements, we also investigated
the fluid velocity field around the two particles. The velocity pro-
files around the two particles for the two cases at t� ¼ 0:7379 are
shown in Fig. 8. As seen, a couple of symmetrical vortices in both
the left and right side of each particle are formed in the case of
c ¼ 1:0, while in the case of c ¼ 2:0 the magnitude of the vortex
flow around the smaller particle is obviously much smaller than
that around the larger one. This result further confirms that the
sedimenting velocity of the bigger particle is larger than that of
the smaller one. Furthermore, unlike the uniformly moving fluid
in the gap of the two identical particles, the induced flow velocity
between the two non-identical particles shows an obvious trend of
(a) (b)

Fig. 8. The velocity field around the two particles for (a ) c ¼ 1:0 and (b) c ¼ 2:0 at
t� ¼ 0:7379.

(a) (

Fig. 9. (a) The pressure field around the two particles for c ¼ 1:0 at t� ¼ 0:7379. (b) Varia
for c ¼ 1:0 at t� ¼ 0:7379. In the figure plot, the pressure is taken to be the normalized val
in the flow field, and they are computed respectively through p ¼ c2

s q and p0 ¼ c2
s q0. q is

settling velocity of the trailing particle (P1). The dotted rectangular areas represent the
decreases along the vertical direction of sediment. This indicates
that in the case of c ¼ 2:0, the moving fluid between the two par-
ticles is influenced by the wake of the leading particle stronger
than that in the case of c ¼ 1:0. This phenomenon can also be evi-
denced from Figs. 9 and 10, where the pressure fields around the
two particles and the pressure distribution along the center line
of the leading particle (P2) in the vertical direction are shown. As
can be seen, the pressure difference between the surface of two
particles in the case of c ¼ 1:0 is larger than that in the case of of
c ¼ 2:0. A further calculation shows that the pressure gradient in
this region for the case of c ¼ 1:0 (5:76� 10�2) is much higher than
that for the case of c ¼ 2:0 (1:21� 10�2). This result is also found to
be hold until the two non-identical particles touch each other.

On the other hand, the results of Fig. 7 show that during the
tumbling stage and even for a time period after separation, the
angular velocity of the lager particle is significantly smaller than
that of the smaller particle. In other words, the change of the angu-
lar velocity of the larger particle is less than the smaller particle,
which can be attributed to the difference in mass (and thus
inertia). After a few periods, they all tend to zero in spite of weak
oscillations due to viscous effect.

During the tumbling stage and the subsequent separation from
each other, as expected, the larger particle offsets laterally from
the channel centerline much less than the smaller particle, which
is revealed by the difference in the lateral velocity in Fig. 6ðaÞ and
ðcÞ. This indicates that the smaller particle experiences a very large
repulsive force from the larger one. Subsequent to this, the two par-
ticles migrate towards the centerline of the channel. In contrast, the
two particles in Case-0 oscillate with a higher amplitude about the
centerline. Furthermore, it will be shown later that the two parti-
cles in Case-0 undergo the repeated DKT motion at later stage,
and thus such cross-motion will take place more than once. At
the time of kissing in both cases, from Fig. 6ðaÞ and ðcÞwe also note
that the lateral motion of Particle 1 (P1) is closer to the channel cen-
terline and changes more slightly than that of Particle 2 (P2) during
the DKT process for the first time. This difference indicates that the
trailing particle pushes the leading one aside when they touch each
other. As P2 moves towards the wall and hits the wall, the repulsive
force from the walls pushes it back to the centerline. In addition, it
should be noticed that after tumbling the two particles will
exchange their position in the vertical direction. Since then, as
displayed in Fig. 6ðbÞ and ðdÞ, in the case of two non-identical par-
ticles the vertical distance between them continues to increase
b)

tions of the pressure along the center of the leading particle in the vertical direction
ue, that is, p� ¼ ðp� p0Þ=ðq0v2

0Þ. Here, p and p0 are the pressure and its average value
the fluid density, and q0 is the mean density averaged over the flow, and v0 is the

regions of vertical positions occupied by the two particles.
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Fig. 10. (a) The pressure field around the two identical particles for c ¼ 2:0 at t� ¼ 0:7379. (b) Variations of the pressure along the center of the leading particle in the vertical
direction for c ¼ 2:0 at t� ¼ 0:7379. In the figure plot, the pressure is taken to be the normalized value, that is, p� ¼ ðp� p0Þ=ðq0v2

0Þ. Here, p and p0 are the pressure and its
average value in the flow field, and they are computed respectively through p ¼ c2

s q and p0 ¼ c2
s q0. q is the fluid density, and q0 is the mean density averaged over the flow,

and v0 is the settling velocity of the trailing particle (the larger particle). The dotted rectangular areas represent the regions of vertical positions occupied by the two particles.
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with time, and each particle eventually settles with a constant
speed and reaches to a steady state. This clearly suggests that they
will not perform the DKT process any more. However, for the case of
two equal-sized particles the two particles will undergo the DKT
process again (we will show this result later).

Also noteworthy from Fig. 6 is that there is a time duration in
which the settling velocities of the two particles keep approxi-
mately equal from the kissing stage to the tumbling stage. Over
this time intervals (see Fig. 6ðdÞ), the settling velocities of two par-
ticles in Case-1 are smaller than those in Case-0, and also the time
duration is much shorter in Case-1. Two effects are responsible for
the difference. The first is the relative velocity of the two particles
during the time duration, and the second is the length of the path
over which the trailing particle travels. By measuring the differ-
ence in the transverse and longitudinal velocity between two par-
ticles, we find that the relative velocity of the two particles in Case-
1 is indeed slightly larger than that of two particles in Case-0. At
the same time, due to the size difference between the two
particles, the path along which the trailing particle rolls around
the leading one in the tumbling process is much shorter for the
case of two identical particles. In addition, when two particles con-
tact with each other, the trailing particle is completely immersed
in the wake region of the leading one. Due to the size difference
of the leading particle between Case-0 and Case-1, the particle-
induced flow between two particles in Case-1 drags the trailing
particle downward more quickly. Taking these effects on the parti-
cle relative movement into account, the time duration for this case
can be expected much shorter than that in Case-0.

The forces acting on the particles are also different in the two
cases. Fig. 11ðaÞ and ðbÞ show the time history of drag coefficient
in the vertical direction during 0 6 t� 6 40 respectively for Case-
0 and Case-1. Here, the drag coefficient Cd is measured from the
following equation:

Cd ¼
Fd

1
2 qf U

2
pD

; ð22Þ



Fig. 12. The distances between two particles as a function of time for the case of (a) c ¼ 1:0, (b) c ¼ 2:0.

Fig. 13. Effect of variations of the diameter ratio in the range 1–2 on the DKT
process.
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where Up is the settling velocity of the particle, and Fd is the com-
ponent of force acting on the particle in streamwise direction,
which is computed according to the momentum-exchange method
mentioned before. For both cases, it is observed that when the trail-
ing particle moves to touch the leading one, the repulsive force
between the two particles arises and leads to an obvious jump of
the drag coefficients. After that, the drag coefficients of both parti-
cles reach to a steady value (indicated by the vertical dashed line in
Fig. 11). In this time intervals, the corresponding Reynolds number
Rea, based on the settling velocity and the diameter of the particle,
varies in the range of 30:7 6 Rea 6 35:5 for Case-0, and for
Case-1 Rea falls in the range of 12:2 6 Rea 6 13:67 for P2, and
24:5 6 Rea 6 27:5 for P1. Particularly, when the two particles touch
each other (indicated by the vertical dashed line in Fig. 11), the drag
coefficients of the two particles in Case-1 are respectively lower
than those in Case-0. This indicates that the two particles with dif-
ferent sizes are easier not only to touch but also to separate from
each other than two identical particles.

In order to analyze the DKT process more clearly, we further
examine the time development of the distances between two par-
ticles. Fig. 12 presents the three distances between the two parti-
cles as a function of time for the two cases. As discussed above,
the first time of DKT process in Case-1 occurs earlier than that in
Case-0. Similar to the results of Fig. 6ðbÞ and ðdÞ, the time duration
in Case-1 during which the two particles are in close contact is vis-
ibly shorter than that in Case-0. By measuring the time durations
in Figs. 6ðdÞ and 12, we find that they are consistent with each
other. In addition, as pointed out above, it is clearly seen that the
two particles in Case-0 interact by undergoing repeated DKT pro-
cess [11], while the two particles in Case-1 do not appear to expe-
rience the DKT process any longer after the first time of the DKT
process. When the two particles separate from each other, in
Case-1 the smaller one falls significantly slower owing to the dif-
ference in the particle size. At this point, it is noticed that the larger
particle have migrated below the smaller one (see Figs. 6ðbÞ and
12ðbÞ). As time elapses, the two particles migrate apart more from
each other so that the smaller particle can no longer be sucked into
the wake of the larger one, and the wake effect from the front par-
ticle on the latter one will fade. Thus, another DKT process would
not be expected. In contrast, in the case of two equal-sized parti-
cles, the upper particle can shift into the wake of the lower one,
where the pressure is low, after a period of sedimentation. Hence,
the second DKT process and more will occur later on. Additionally,
owing to the difference in the sedimenting velocity between two
particles at t� > 96, the gap between the larger and smaller
particles increases linearly with time. At this time stage, the termi-
nal particle Reynolds number Ret is 23.9 for the larger particle, and
6.73 for the smaller one.

3.2.1.1. a. Effect of the initial distance. From the above comparisons,
it is revealed above that the larger particle sediments faster than
the smaller one. Thus, one can infer that whatever the initial longi-
tudinal distance (Dh) between two different-sized particles are set
to be, the larger particle is bound to catch up with the smaller one
originally in the lower position as time proceeds, and the DKT phe-
nomenon will take place subsequently. Numerically, we conduct
simulations with different Dh to confirm this speculation. For
example, even if Dh=D1 ¼ 100 the gap Dr between two particles de-
creases with time until they touch each other, and they subse-
quently depart. In addition, it is found that Dr continues to
increase after the DKT process for each Dh. This indicates that the
two particles can undergo the DKT process only once.

3.2.1.2. b. Effect of diameter ratio. We now consider the DKT phe-
nomenon at different values of c. As shown above, two modes
are identified as c changes from 1 to 2: The two particles undergo
the DKT process from repeatedly to just once. To investigate how
these two modes change, we refined our simulations as
1 6 c � 2. Fig. 13 shows the time history of the normalized gap
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(D�r ¼ Dr=D1) between two particles at different diameter ratios.
For all the cases considered, D�r ¼ 0 occurs at least once, which
undoubtedly implies the occurrence of the DKT process. More
importantly, it is observed that the two particles undergo repeated
DKT process as c 6 1:21, while for c P 1:22 the two particles
separate from each other and the gap increases with time. This
suggest that the critical value of c for the two patterns lies between
1:21 and 1:22. In addition, it is found that the repeated DKT process
occurs more frequently with decreasing c, which was also
observed by Shao et al. [22] with some crude values of c.

It is noted that as c > 2:0, after the first time of DKT process the
gap between two particles keeps increasing with time, which is in
accord with the case of c ¼ 2:0.

3.2.2. Case 2. The smaller particle above the larger one
In this section, we consider the second case in which the smal-

ler particle initially locates above the larger one. The computa-
tional conditions in the start state are the same as the above case
except that the smaller particle is positioned at the height of
y ¼ 15:0 cm, and the larger particle at y ¼ 14:6 cm. As before, c is
first taken to be 2 in the following simulations.

Fig. 14 compares the particle motion and velocity versus time
for Case-0 and Case-2. Regarding the lateral migration, the motions
of two particles in the two cases behave similarly. When compared
with the corresponding results shown in Fig. 6ðaÞ and ðcÞ, we ob-
serve that in Case-2 the larger particle migrates to the right side
of the channel center more than the smaller particle, and the smal-
ler particle experiences moving from the right to the left side of the
centerline. Another difference is that the time at which the two
particles deviates from their initial transverse position is at
t� � 20:29 in Case-2, while the deviation of two particles appears
later in Case-0 and earlier Case-1. It is noted that the two particles
are not in close contact with each other at this time (cf Fig. 14ðbÞ).
Also observed in Fig. 15 is that the two particles start to rotate in
opposite directions. Thereafter, as the two particles migrate to-
wards the lateral wall, the viscous forces reduces the transverse
velocity of the two particles, and the particle–wall repulsive force
pushes them backward the centerline.

On the other hand, as shown in Fig. 14ðbÞ and ðdÞ, the settling
velocities of two particles increase rapidly at initial times for both
cases, while in Case-2 the smaller particle (the trailing particle) ini-
tially falls more slowly than the larger one (the leading particle)
due to their difference in sizes, thus causing their longitudinal
gap to increase with time. Subsequently, at t� � 12:9458, the smal-
ler particle begins to fall with a higher sedimenting velocity. As a
result, the longitudinal gap turns to decrease until the two
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particles touch each other. The reason for this behavior is that
there is a strong suction effect on the smaller (trailing) particle
due to the low pressure in the wake of the larger (leading) one,
which causes the upper particle to fall more rapidly than the lower
one. To confirm this speculation, we investigate the velocity field in
the proximity region of the two particles at this time point. As
shown in Fig. 16, the wake flow behind the larger particle extends
beyond the smaller one, indicating that the smaller particle is
strongly influenced by the wake of the larger one, and the smaller
particle experiences less drag and thus it sediments with a higher
velocity than the larger one. Fig. 17ðaÞ and ðbÞ show the pressure
around the two particles and the pressure along the center of the
larger particle in the vertical direction at t� ¼ 12:9458, respec-
tively. At this time, it can be seen that the smaller particle has been
sucked in the low-pressure region behind the larger one. Therefore,
beyond this time the smaller particle will be accelerated. After
evolving into the kissing stage, the two particles rotate more in
the opposite direction as show in Fig. 15. Again, it is seen that
the smaller particle rotates more rapidly than the larger one.

A common fact observed when the two particles ‘‘kiss’’ each
other among the three cases is that the trailing particle is closer
to the channel center than the leading particle (see Figs. 6ðaÞ and
14ðaÞ). One explanation accounting for this observation is that
the trailing particle sediments faster than the leading one, and
hence must push the leading particle aside to surpass it.

During the tumbling stage up to the subsequent separation
from each other, the center of the smaller particle is always located
above the larger one. This is quite different from those in the other
two cases where the leading particle and the trailing particle ex-
change positions in the sedimentation direction (see Fig. 6ðbÞ). In
addition, it can be seen that the approximately equal value of the
vertical velocities of the two particles (see Fig. 14ðdÞ) is larger than
that in the Case-1 in Fig. 6ðdÞ. This can be expected because in
Case-2 the two particles move with a longer time period before
they approach to each other. During this time interval, Rea for
the smaller particle is 13:8	 0:075, and that for the larger particle
is 27:6	 0:150. In addition, Fig. 18 shows the vertical drag coeffi-
cients of the two particles as a function of time. As seen from in
the figure, the values of Cd of the smaller particle is much smaller
than those of the larger one. Thus, after this time duration, the sed-
imenting velocity of the smaller particle can keep higher value for a
period of time although the two particles are still in close contact,
as shown in Fig. 14ðdÞ.

Similar to the results in Fig. 6ðdÞ, as the two particles move far-
ther away from each other, the interaction effects of two particles
diminish and each particle falls with a steady velocity in the set-
tling direction eventually (Fig. 14ðdÞ). Thus, the DKT process will
not be expected for the second time. During the two particles
migrating towards the channel centerline at this stage, the magni-
tude of the angular velocity decreases with time, and oscillate
about zero. Not surprisingly, the angular velocity of the smaller
particle oscillates more significantly, as depicted in Fig. 15. Based
on the basically unchanged settling velocity, Ret of the smaller par-
ticle is 6:78, and that of the larger one is 24:14. It can be found that
the terminal particle Reynolds number of the two particles are al-
most the same in Case-1 and Case-2.

In order to more definitely resolve the behavior of the two parti-
cles during the DKT process, we show the distance between the two
particles as a function of time in Fig. 19. As pointed out earlier, it is
clear that in the initial time period of 0 6 t� 6 12:9458 (denoted by
O–A) the gap Dr (and Dy) between two particles increases with time,
while the longitudinal distance Dx remains unchanged without any
deviation of transverse position of each particle. After this, the two
particles start to interact by undergoing the characteristic behavior
of the DKT process: drafting during 12:9458 < t� < 30:8796 (A–B),
kissing and tumbling during 32:835 6 t� 6 62:7185 (B–C). After
the tumbling stage, the gap Dr (and Dy) increases further as time ad-
vances, suggesting that the two particles separate from each other
and cannot perform the DKT process again. As also noted earlier, it
can be clearly seen from Fig. 19 that Dy is greater than zero through-
out the whole time span. Notice that the smaller particle is initially
located above the larger one in Case-2, which indicates that even
when the DKT process is completed and the two particles become
farther apart from each other, the smaller particle cannot always
migrate to below the larger one.

3.2.2.1. a. Effect of the initial distance. We now investigate the effect
of the initial longitudinal distance Dh between two particles on their
hydrodynamic interactions. In Fig. 20, the normalized gap D�r be-
tween the two particles versus time at c ¼ 2:0 is presented for dif-
ferent normalized initial longitudinal distances. It can be seen that
in each case D�r increases during the initial time period. As
Dh=D1 > 2:47, a further increase of D�r with time is observed because
the wake of the larger particle imposes a smaller influence on the
smaller trailing one. On the contrary, when Dh=D1 6 2:47;D�r first
decreases to zero at a certain time, remains for a short period and
then starts to increase. It is obvious that D�r approaches to zero more
rapidly as Dh decreases. This can be explained by the fact that, as Dh
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Fig. 17. (a) The pressure field around the two particles at t� � 12:9458. (b) Variations of the pressure along the center of the larger particle in the vertical direction at
t� � 12:9458. The dotted rectangular areas represent the regions of vertical positions occupied by the two particles.
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Fig. 18. Time history of drag coefficient with time in the vertical direction. The two
dash lines indicate the time interval within which the vertical velocities of the two
particles are approximately equal. The inset presents an enlargement of the results
in the intervals defined by the dashed lines.

Fig. 19. Time evolution of distances between two particles.

Fig. 20. Effect of initial longitudinal distance Dh on the interaction of two particles
at c ¼ 2:0.
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is decreased, the smaller particle is pulled down more forcefully by
the low pressure behind the large particle and so the catching time
is shortened. Similar to the result in Fig. 19, after a time duration of
staying at D�r � 0;D�r increases with time rapidly which means that
the two particles depart quickly. Therefore, we may conclude that
for Dh=D1 6 2:47 there would be only one DKT process taking place
between the two particles.
3.2.2.2. b. Effect of the diameter ratio. The above results with regard
to the effect of initial distance on the interactions between two dif-
ferent particles have demonstrated that the initial positions be-
tween the particles in the settling direction has strong influence
on their interaction dynamics, such as the occurrence of the DKT
process. Accordingly, we examine next how the diameter ratio
influence the dynamic behavior of two particles, of which the
smaller particle is placed above the larger one. To investigate the
effect of diameter ratio, the normalized initial longitudinal
distance is fixed to be Dh=D1 ¼ 2.

Note that the DKT process can take place once under the pres-
ent position at c ¼ 2:0. We first pay our attention to the cases in
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which the diameter ratio is, as discussed earlier, greater than 2. In
Fig. 21, the gap between two particles for different values of c is
plotted as a function of time. As clearly shown, for c 6 2:23, after
a short period of sedimentation, the gap D�r between the two par-
ticles narrows to zero, and then increases rapidly after staying in
zero for some time. In contrast, for c > 2:23;D�r continues to in-
crease with time. This indicates that the value of c ¼ 2:23 is a crit-
ical value for the occurrence of the DKT process.

On the other hand, we may recall that two identical particles
will interact in the fashion of repeated DKT process for
Dh=D1 ¼ 2. With this in mind, we may further investigate the influ-
ence of c ranging from 2 to 1 on the repeating occurrence of the
DKT process. The variations of D�r versus time are plotted in
Fig. 22 for different values of c. As expected, in each case, there
is a time duration of D�r ¼ 0 which, in general, grows with increas-
ing c. The following development of D�r ¼ 0 appears to be classified
into two modes by the critical value of c ¼ 1:27: for c 6 1:27, the
zero-value of D�r undergoes repeatedly, while for c > 1:27 D�r ¼ 0
does not occur any more. From these results, we can see that re-
peated DKT process can take place when the diameter ratio
Fig. 21. Effect of variations of diameter ratio c in the region of c P 2 on the
interaction of two particles at Dh=D1 ¼ 2.

Fig. 22. Effect of variations of c in the interval ð1;2Þ on the interaction of two
particles at Dh=D1 ¼ 2.
changes in the range 1 < c 6 1:27, while the DKT process occurs
only once as 1:27 < c 6 2.

Overall, as the effect of the diameter ratio on the interactions of
two particles is concerned, we can divide c into three regimes
especially for the occurrence of the DKT process: first, the two par-
ticles will undergo repeated DKT process over the range of
1 < c 6 1:27; second, as 1:27 < c 6 2:23 the two particles will un-
dergo the DKT process only once; third, the DKT process will never
occur as c > 2:23.
4. Concluding remarks

In this paper, we studied the DKT process of two sediment par-
ticles with a lattice Boltzmann equation method. Particularly, we
considered three cases, namely, Case-0: two identical particles;
Case-1: the larger particle is initially located above the smaller
one; and Case-2: the smaller particle is initially above the larger
one. We first validated the reliability of the numerical method by
comparing with the existing results for the sedimentation of one
and two identical circular particles in a two-dimensional channel.
The influences of the initial longitudinal distance and diameter ra-
tio on the interactions between two different-sized particles were
carefully analyzed. Three kinds of distances between two particles
were introduced to analyze the interactions. The main conclusions
of the study are summarized as follows:

(1) In Case-1, the increase of the initial longitudinal distance be-
tween the two particles have no effect on the occurrence of the
characteristic DKT process. This is due to the fact that the larger
particle settles more quickly than the smaller one. The increase
of the diameter ratio will shorten the time for the two particles
to undergo the DKT process, while the decrease of diameter ratio
can enhance the occurrence of the repeated DKT process. If the
two particles undergo the DKT process only once, it is noteworthy
that after the end of the DKT process they will migrate farther
apart from each other as time proceeds, and each particle will
eventually migrate in the longitudinal direction with a steady-state
settling velocity while does not migrate in the transverse direction
with a zero lateral velocity. Furthermore, during the DKT process,
the two particles will exchange positions in the settling position.

(2) In Case-2, it is found that the gap between two particles in-
creases at the initial time periods of movement due to the differ-
ence in the particle size. In case that the two particles can
undergo the DKT process, the longitudinal position of the smaller
particle is kept above the larger particle, which is different from
the previous results about the DKT phenomenon in the published
literatures. As expected, the increase of the initial longitudinal dis-
tance yields a negative effect on the occurrence of the DKT process.
This is because the more the smaller particle is away from the lager
one, the weaker it is influenced by the low pressure behind the lar-
ger particle. The results of the effect study of diameter ratio show
that the two particles would undergo three transitions in the pat-
tern of dynamics of interaction from repeated DKT process, one-off
DKT process and continuous separation from each other.

Compared with Case-0, it is found that in the case of two non-
identical particles the time duration for which the two particles keep
close together in the maiden DKT process is significantly shorter.

In addition to the particle size, density difference is a significant
factor characterizing the particle–particle interactions. Moreover,
the wall effect on the results need to be considered under different
blockage ratios. Additionally, we would like to point out that the
extension of the present work from two dimensions to three
dimensions is relatively straightforward without much difficulty.
In the future, we will conduct a comprehensive investigation on
the dynamics of interactions between two particles within the
three dimensions.
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