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Abstract

The main goal of this article is to discuss the numerical simulation
of incompressible viscous fluid flow with moving and free boundaries.
The case of flow with moving boundaries include the direct numerical
simulation of moving rigid bodies of various shapes in viscous fluids. The
case of flow with free boundaries include the numerical simulation of a
viscous fluid flow with a free capillary surface. The main components
of the methodology applied to the solution of these problems are: (i)
space approximation by finite element methods, (ii) time integration by
operator–splitting, (iii) treatment of advection by a wave–like equation
method, (iv) treatment of the incompressibility by L

2 or H
1–projection

methods, and (v) Lagrange multiplier/fictitious domain methods in the
case of flow with moving rigid bodies. We present the results of various
numerical experiments, including the sedimentation of rigid bodies, the
motion of hydrodynamic pendula, and capillary free–surface flow.
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1 Introduction

In this article we discuss a methodology that allows the direct numerical
simulation of incompressible viscous fluid flow with moving or free boundaries.
This is done by an (almost) unified approach for the computational treatment
of this type of problems. The methodology that we advocate to address the
numerical solution of these problems relies on the combination of:
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• Finite element methods for the space approximation to take advantage of
existing variational formulations.

• Operator–splitting for time integration to decouple the numerical and
physical difficulties, and treat optimally, the various operators present
in the model.

• Volume distributed Lagrange multiplier based fictitious domain methods
to solve the flow in a fixed space region, in the case of flow with moving
rigid boundaries.

• Wave–like equation methods for the treatment of advection.

• L2 or H1–projection methods for the treatment of incompressibility.

The present article reviews methods and results discussed in references [21],
[22], [23], [30], [38], [39], [40], [41]. In Section 2 we apply the methodology to
the numerical simulation of fluid flow with moving boundaries. In Section 3 we
apply the methodology to the numerical simulation of viscous fluid flow with
free boundaries. In Sections 4–8 we present some numerical results including
the sedimentation of rigid bodies in an incompressible viscous fluid, flow past
moving rigid bodies, the motion of hydrodynamic pendula, and flow with a free
surface.

2 Fluid flow with moving boundaries

For more than one decade the direct numerical simulation of particulate flow
has been a center of attention for many researchers. This fast growing field
of investigations has produced several different numerical solvers, often called
particle movers (see [26] for a review). One of these particle movers is the so
called distributed Lagrange multiplier/fictitious domain or DLM particle mover.
This method has been successfully applied to the numerical solution of various
different problems, including the simulation of sedimentation and fluidization
of rigid particles in two and three dimensions, flow past rigid bodies, and the
motion of hydrodynamic pendula (see above references). Other applications
may include the investigation of micro–structure in flowing suspensions, slurry
transport and hydraulic fracturing. For these problems the flow is modeled
by the Navier–Stokes equations, while the motion of the bodies is modeled by
the Newton–Euler equations. These equations are coupled through the no–slip
condition on the particle boundaries, as well as the hydrodynamic forces and
torques which appear in the equations of rigid–body motion. A key feature
of the method is that the interaction between the fluid and the rigid bodies
is implicitly modeled by a global variational formulation of the virtual power
type, so that the hydrodynamical forces and torques are not computed explicitly
during the simulations. The distributed Lagrange multiplier/fictitious domain
method consists in filling the moving bodies by the surrounding fluid and
enforcing the fluid flow as a rigid body motion on the region originally occupied
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by the rigid bodies. Thus a fixed grid can be used for the entire flow simulation,
eliminating the need for repeated re–meshing and projection. Then the rigid
body constraint is relaxed by using distributed Lagrange multipliers to obtain
a flow problem in the entire region. The role of these Lagrange multipliers is to
enforce the rigidity inside the regions occupied by the bodies by matching the
velocity fields of two continua, namely the fluid and the rigid bodies. To prevent
overlapping of the rigid bodies, a short range repulsive force is introduced so
that when the distance between two particles is less than a given size (usually
the mesh size), this repulsive force is activated. The solution method of the
resulting equations uses finite element discretizations in space and operator
splitting for time integration. This methodology is applied to the numerical
simulation of the sedimentation of rigid bodies in viscous incompressible fluids,
flow past rigid bodies and the motion of hydrodynamic pendula. Two finite
element approximations have been used to solve these problems: the Bercovier–
Pironneau’s [8], and the Taylor–Hood’s [69].

2.1 A Fluid–particle interaction model and its global variational
formulation

Let Ω ⊂ Rd (d = 2, 3) be a space region, with boundary Γ, filled with an
incompressible viscous fluid of density ρf ; we suppose that Ω contains J moving
rigid bodies B1, B2, ..., BJ (see Figure 1 for a particular case where d = 2
and J = 4). We denote by n the unit normal vector on the boundary of
Ωf = Ω\∪J

j=1Bj , pointing outward to the fluid region. Assuming that the only
external force acting on the mixture is gravity (denoted by g), then, between
collisions, the fluid flow is modeled by the following Navier–Stokes equations

B

B
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Figure 1: An example of two–dimensional flow region with four rigid bodies.

ρf

[

∂u

∂t
+ (u · ∇)u

]

= ρf g + ∇ · σ in Ωf (t), (1)

∇ · u = 0 in Ωf (t), (2)

u(x, 0) = u0(x), ∀x ∈ Ωf (0) (with ∇ · u0 = 0), (3)

where u denotes the velocity of the fluid, σ = τ − p I is the stress–tensor,
with τ = µ [∇u + (∇u)t] for a Newtonian fluid with viscosity µ. The above
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equations are complemented by the following boundary conditions:

u = g0 on Γ, (4)

u(x, t) = Vj(t) + ωj(t) ×
−−−−→
Gj(t)x, ∀x ∈ ∂Bj(t), j = 1, ..., J. (5)

In (5) Vj and ωj denote the velocity of the center of mass Gj and the
angular velocity of the jth body, respectively. The no–slip boundary condition
(5) expresses that the flow and rigid body motion velocities coincide on the
boundary of each rigid body Bj .

The motion of the rigid bodies is modeled by the following Newton–Euler
equations

Mj
dVj

dt
= Mjg + Fj + Fr

j , j = 1, ..., J, (6)

d(Ijωj)

dt
= Tj +

−−−−−→
Gj(t)xj × Fr

j , j = 1, ..., J, (7)

where
dGj

dt
= Vj , j = 1, ..., J. (8)

In (6)–(7) Mj and Ij denote the mass and the inertia tensor of the jth rigid
body, respectively; Fj and Tj represent the resultant and the torque of the
hydrodynamical forces acting on the jth body, respectively, i.e.,

Fj = −

∫

γj

σn dγj , and Tj = −

∫

γj

−−→
Gjx × σn dγj ,

with γj = ∂Bj . Finally Fr
j is a short range repulsive force acting on Bj

introduced to prevent those particle/particle and particle/wall penetrations
which may happen during the numerical simulation (see [30]). There is then a
resulting torque in (7) acting on the point xj where Fr

j applies on Bj . Equations
(6)–(8) are completed by the following initial conditions:

Bj(0) = B0j , Gj(0) = G0j , Vj(0) = V0j , ωj(0) = ω0j , j = 1, ..., J. (9)

To obtain a variational formulation of the problem (1)–(9), we introduce the
following space of compatible test functions:

W0(t) = { (v,Y,θ) |v ∈ (H1(Ωf (t)))d, v = 0 on Γ, Y = {Yj}
J
j=1

θ = {θj}
J
j=1, with Yj ∈ R

d, θj ∈ R
3, v(x, t) = Yj + θj ×

−−−−→
Gj(t)x,

∀x ∈ ∂Bj(t), ∀ j = 1, ..., J }.

In the previous space we have θj = (0, 0, θj) if d = 2.
Applying the virtual power principle to the whole mixture (the fluid and
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rigid bodies), yields the global variational formulation:

ρf

∫

Ωf (t)

[

∂u

∂t
+(u·∇)u

]

·v dx + 2µ

∫

Ωf (t)
D(u) :D(v) dx −

∫

Ωf (t)
p∇·v dx +

J
∑

j=1

Mj
dVj

dt
· Yj +

J
∑

j=1

d(Ijωj)

dt
· θj = ρf

∫

Ωf (t)
g · v dx +

J
∑

j=1

(Mjg + Fr
j) · Yj +

J
∑

j=1

−−−→
Gjxj × Fr

j · θj , ∀ (v,Y,θ) ∈ W0(t),

(10)

∫

Ωf (t)
q∇ · u(t) dx = 0, ∀ q ∈ L2(Ωf (t)), (11)

u(t) = g0(t) on Γ, (12)

u(x, t) = Vj(t) + ωj(t) ×
−−−−→
Gj(t)x, ∀x ∈ ∂Bj(t), ∀ j = 1, ..., J, (13)

dGj

dt
= Vj , ∀ j = 1, ..., J, (14)

to be completed by the initial conditions

u(x, 0) = u0(x), ∀x ∈ Ωf (0), (15)

Bj(0) = B0j , Gj(0) = G0j , Vj(0) = V0j , ωj(0) = ω0j , ∀ j = 1, ..., J. (16)

In relations (10)–(16) we have denoted by φ(t) the function x → φ(x, t).
Moreover, we have used the following notation:

D(u) =
1

2

[

∇u + (∇u)t
]

a · b =
d

∑

k=1

akbk, ∀a = {ak}
d
k=1, b = {bk}

d
k=1,

A : B =
d

∑

k=1

d
∑

l=1

aklbkl, ∀A = (akl)1≤k,l≤d, B = (bkl)1≤k,l≤d.

In the above variational formulation it is reasonable to assume that u(t)
belongs to (H1(Ωf (t)))d, and p(t) belongs to L2(Ωf (t)). We also have ωj(t) =
(0, 0,ωj(t)) if d = 2.

Formulations such as the one above, or closely related ones, have been
used by other authors (see [35], [36], [46] and [47]) to simulate particulate
flow via arbitrary Lagrange–Euler (ALE) methods using moving meshes. In
this article we consider an alternative based on fictitious domain methods (also
called domain embedding methods) and described with many details in [21]
and [30], for instance. The main advantage of the fictitious domain approach
is the possibility to achieve the flow related computation on a fixed space
region, allowing the use of a fixed mesh for the entire simulation, which in
fact represent a significant simplification from the computational point of view.
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Actually, numerical methods in which the computational domain is remeshed
are significantly more expensive because the mesh has to be refined in the
region between particles (when they are close to each other), besides the need
of repeated remeshing and projection.

2.2 A distributed Lagrange multiplier based fictitious domain
formulation

In general terms our goal is to find a methodology with the following properties:

(a) A fixed mesh can be used for flow computations.

(b) The rigid body positions are obtained from the solution of the Newton–
Euler equations of motion.

(c) The time discretization is done by operator splitting methods in order
to treat individually the various operators occurring in the mathematical
modeling

To achieve such a goal, we proceed as follows:

(i) We fill the rigid bodies with the surrounding fluid.

(ii) We assume that the fluid inside the rigid body has a rigid body motion.

(iii) We use (i) and (ii) to modify the global variational formulation.

(iv) We force the rigid motion inside each moving body via a Lagrange
multiplier defined (distributed) over the body.

(v) We combine (iii) and (iv) to derive a variational formulation involving
Lagrange multipliers to force the rigid body motion inside the moving
bodies.

To obtain the modified variational formulation below this time we introduce
the following space of compatible test functions:

W̃0(t) = { (v,Y,θ) |v ∈ (H1(Ω))d, v = 0 on Γ,Y = {Yj}
J
j=1, θ = {θj}

J
j=1,

with Yj ∈ R
d, θj ∈ R

3,v(x, t) = Yj + θj ×
−−−−→
Gj(t)x,

∀x ∈ Bj(t), ∀ j = 1, ..., J. }

We suppose (for simplicity) that Bj is made of an homogeneous material
of density ρj ; then, taking into account the fact that any rigid body motion
velocity field v verifies ∇ · v = 0 and D(v) = 0, steps (i) to (iii) yield the
following variant of the variational formulation (10)–(16):
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For t > 0, find u(t) ∈ (H1(Ω))d, with u(t) = g0(t) on Γ, p(t) ∈ L2(Ω),
Gj(t) ∈ Rd, Vj(t) ∈ Rd, ωj(t) ∈ R3, such that

ρf

∫

Ω

[

∂u

∂t
+ (u · ∇)u

]

· v dx + 2µ

∫

Ω
D(u) : D(v) dx −

∫

Ω
p∇ · v dx +

J
∑

j=1

(1 −
ρf

ρj
)Mj

dVj

dt
· Yj +

J
∑

j=1

(1 −
ρf

ρj
)
d(Ijωj)

dt
· θj =

ρf

∫

Ω
g · v dx +

J
∑

j=1

[

(1 −
ρf

ρj
)Mj g + Fr

j

]

· Yj +

J
∑

j=1

−−−→
Gjxj × Fr

j · θj , ∀ (v,Y,θ) ∈ W̃0(t),

(17)

∫

Ω
q∇ · u dx = 0, ∀ q ∈ L2(Ω), (18)

u(x, t) = Vj(t) + ωj(t) ×
−−−−→
Gj(t)x, ∀x ∈ Bj(t), ∀ j = 1, ..., J, (19)

dGj

dt
= Vj , ∀ j = 1, ..., J, (20)

Bj(0) = B0j , Gj(0) = G0j , Vj(0) = V0j , ωj(0) = ω0j , ∀ j = 1, ..., J, (21)

u(x, 0) = u0(x),∀x∈Ωf (0), and u(x, 0) = V0j + ω0j ×
−−−→
G0jx,∀x∈B0j . (22)

Observe that in this formulation u(t) as well as p(t) are defined over the entire
domain Ω which contain the mixture (solid–liquid).

The family of Lagrange multipliers {λj}J
j=1, with λj ∈ Λj(t) :=

(H1(Bj(t)))d, j = 1, ..., J, is employed to relax the rigid body motion constraint
(19). The following scalar products can be used in the formulation:

< µ,v >j =

∫

B(t)
(µ · v + δ2j∇µ : ∇v) dx, ∀ µ and v ∈ Λj(t),

< µ,v >j =

∫

B(t)
(µ · v + δ2j D(µ) : D(v)) dx, ∀ µ and v ∈ Λj(t),

with δj a characteristic length (the diameter of Bj , for example). We obtain,
thus the following fictitious domain formulation with Lagrange multipliers:
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For t > 0, find u(t) ∈ (H1(Ω))d, with u(t) = g0(t) on Γ, p(t) ∈ L2(Ω),
Gj(t) ∈ Rd, Vj(t) ∈ Rd, ωj(t) ∈ R3, λj(t) ∈ Λj(t), such that

ρf

∫

Ω

[

∂u

∂t
+ (u · ∇)u

]

· v dx + 2µ

∫

Ω
D(u) : D(v) dx −

∫

Ω
p∇ · v dx +

∑J

j=1
(1 −

ρf

ρj
)Mj

dVj

dt
· Yj +

∑J

j=1
(1 −

ρf

ρj
)
d(Ijωj)

dt
· θj −

∑J

j=1
< λj , v − Yj − θj ×

−−→
Gjx >j = ρf

∫

Ω
g · v dx +

∑J

j=1

[

(1 −
ρf

ρj
)Mj g + Fr

j

]

· Yj +
∑J

j=1

−−−→
Gjxj × Fr

j · θj ,

∀ (v,Yj ,θj) ∈ (H1
0 (Ω))d × R

d × R
3,

(23)

∫

Ω
q∇ · u dx = 0, ∀ q ∈ L2(Ω), (24)

< µj ,u(t) − Vj(t) − ωj(t) ×
−−−−→
Gj(t)x >j= 0, ∀µj ∈ Λj(t), ∀ j = 1, ..., J, (25)

dGj

dt
= Vj , ∀ j = 1, ..., J, (26)

Bj(0) = B0j , Gj(0) = G0j , Vj(0) = V0j , ωj(0) = ω0j , ∀ j = 1, ..., J, (27)

u(x, 0) = u0(x), ∀x∈Ωf (0) and u(x, 0) = V0j + ω0j ×
−−−→
G0jx,∀x∈B0j . (28)

Remark 1 In (23)–(28) only the center of mass, the translation velocity of
the center of mass, and the angular velocity of the particles are considered.
Knowing this quantities one is able to translate and rotate any particle in space
by tracking two extra points x1 and x2 on it. Then these points verify the rigid
motion equation

dxi

dt
= V(t) + ω(t) ×

−−−−→
G(t)xi, i = 1, 2,

xi(0) = xi,0, i = 1, 2.

This approach is very convenient in tree–dimensional problems, especially when
the rigid bodies are non–spherical (see [23]). For two–dimensional problems,
however, to find the orientation of the particles, it is easier to solve the equations

dφj

dt
= ωj , with φ(0)j = φ0

j , ∀ j = 1, ..., J, (29)

where φj(t) = (0, 0,φj(t)) is the rotation angle and ωj(t) = (0, 0,ωj(t)) is the
angular velocity of the jth body.

Remark 2 The fictitious domain approach, described above, has some common
features with the immersed boundary method of C. Peskin (see, e.g., [54] and
[55], but significant differences in the sense that it takes systematically advantage
of distributed vector–valued Lagrange multipliers to force the rigid body motion
inside the particles. As with the methods in [54] and [55], our approach takes
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advantage of the fact that the flow can be computed on a grid which does not
have to vary in time, a substantial simplification indeed.

Remark 3 An approach with some similarities to ours has been developed by
S. Schwarzer et al [33] in a finite difference framework. In the above reference,
the interaction between the rigid body and the fluid is forced via a penalty
method, instead of the multiplier technique used in the present article; also
minor particle–particle penetration is allowed and no enforcement of the rigid
body motion inside the region occupied by the particle is done.

Remark 4 Since, in (23), u is divergence free and satisfies Dirichlet boundary
conditions on Γ, we have

2

∫

Ω
D(u) : D(v) dx =

∫

Ω
∇u : ∇v dx, ∀v ∈ (H1

0 (Ω))d,

which also represents a significant simplification from a computational point of
view, which is another plus for the fictitious domain approach used here.

Remark 5 Using High Energy Physics terminology, the multipliers λj can
be viewed as gluons whose role is to force the rigidity inside Bj by matching
the velocity fields of two continua. More precisely, the multipliers λj are
mathematical objects of the mortar type, very close to those used in domain
decomposition methods to match local solutions at interfaces or on overlapping
regions (see ref. [1]). Indeed, the λ’s in the present article have genuine mortar
properties since their role is to force a fluid to behave like a rigid solid inside
the space region occupied by the moving bodies.

2.3 Treatment of collisions

With the mathematical model that we have considered it is not known if
collisions can take place in finite time (in fact several scientists strongly believe
that lubrication forces prevent these collisions in the case of viscous fluids).
However, collisions take place in Nature and also in actual numerical simulations
if special precautions are not taken. In the particular case of rigid bodies moving
in a viscous fluid, under the effect of gravity and hydrodynamical forces, we shall
assume that the collisions taking place are smooth ones in the sense that if two
rigid bodies collide the rigid body velocities coincide at the points of contact.
Similarly, we assume that if a rigid body hits the boundary, the rigid body
and boundary velocities coincide at the points of contact. ¿From the smooth
nature of these collisions the only precaution to be taken will be to avoid the
overlapping of the regions occupied by the rigid bodies. To achieve this goal, we
have included in the right–hand sides of the Newton–Euler equations (6) and
(7), modeling the rigid body motion, a short range repulsive force.

If B1 and B2 are two rigid bodies of general shape with the points x1 and
x2 from B1 and B2, respectively, realizing the shortest distance d between B1

and B2 (d = |x1 − x2|), we shall require the repulsion force Fr between B1 and
B2 to satisfy the following properties:
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F

d 

r 

ρ 

Figure 2: Repulsion force behavior

(i) To be parallel to −−→x1x2.

(ii) To verify

|Fr| = 0 if d ≥ ρ,

|Fr| = c/ε if d = 0,

(iii) |Fr| has to behave as in Figure 2 for 0 ≤ d ≤ ρ,

with c a scaling factor, ε a ”small” positive number, and ρ the range of the
repulsion force. For the simulations discussed in the following sections, we have
taken ρ + hΩ (hΩ is the space discretization step used for approximating the
velocity). Body/wall collisions can be treated in a similar way. For a more
detailed description of these repulsive forces see references [21] and [30].

2.4 Finite element approximation

For simplicity we assume that Ω is a polygonal domain in R2. Let h(= hΩ) be
a space discretization step, Th a finite element triangulation of Ω, and Ps the
space of polynomials in two variables of degree ≤ s. The two finite element
approximations under considerations are the Bercovier–Pironneau’s and the
Taylor–Hood’s. We describe first the approximation of the velocity and the
pressure in problem (23)-(28) with these finite element methods:

(1) Bercovier–Pironneau (or P1 iso P2/P1). We construct another finite
element triangulation Th/2 of Ω, which is twice finer than Th, by
subdividing each triangle into 4 similar sub–triangles (8 sub–elements
in 3D) by the midpoint sides (see Figure 3(a)). Then, we approximate
respectively (H1(Ω))2, and L2(Ω) by the following finite dimensional
spaces

Wh = {vh |vh ∈ (C0(Ω))2, vh|T ∈ P1 × P1, ∀T ∈ Th/2},

L2
h = {qh | qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ Th}.

(2) Taylor–Hood (or P2/P1). Unlike the previous element, here the
approximations for velocity and pressure are defined on the same
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(a)
velocity

(b)
velocity pressure pressure

Figure 3: Degrees of freedom in the (a) Bercovier–Pironneau, and (b) Taylor–
Hood elements.

triangulation Th of Ω. The degrees of freedom for velocity and pressure
are shown in Figure 3(b). The functional spaces (H1(Ω))2 and L2(Ω)
are then approximated, respectively, by the following finite dimensional
spaces

Wh = {vh |vh ∈ (C0(Ω))2, vh|T ∈ P2 × P2, ∀T ∈ Th},

L2
h = {qh | qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ Th}.

Concerning the spaces (H1
0 (Ω))2 and L2

0(Ω) := {q ∈ L2(Ω) |
∫

Ω q dx = 0}, we
respectively use the following finite dimensional approximations

W0h = {vh |vh ∈ Wh, vh = 0 on Γ},

L2
0h = {qh | qh ∈ L2

h,

∫

Ω
qh dx = 0},

where Wh and L2
h are the corresponding finite dimensional spaces obtained

by the Bercovier–Pironneau or the Taylor–Hood finite element approximations.
Now, to find a finite element approximation of the Lagrange multipliers λj(t),

for j = 1, ..., J , we construct a finite element triangulation T j
h (t) of Bj(t) (see

Figure 4 (a)). Let T j
h/2(t) another finite element triangulation twice finer. The

functional spaces Λj(t) = (H1(Bj(t)))d, are then approximated by

Λjh(t) = {µh|µh ∈ (C0(Bjh(t)))2, µh|T ∈ P1 × P1, ∀T ∈ T j
h/2(t)},

when using the Bercovier–Pironneau element, and

Λjh(t) = {µh|µh ∈ (C0(Bjh(t)))2, µh|T ∈ P2 × P2, ∀T ∈ Th
j(t)},

when using the Taylor–Hood element. An alternative to approximate the
Lagrange multipliers λj(t) is as follows: Let {xi}

Nj

i=1 be a set of points from

Bj(t) which cover Bj(t). We define

Λjh(t) = {µh|µh =
∑Nj

i=1
µiδ(x − xi), µi ∈ R

2, ∀i = 1, ..., Nj}, (30)

where δ(·) is the Dirac measure at x = 0. Then, instead of the scalar product
(3.6) we use < ·, · >jh defined by

< µh,vh >jh=
∑Nj

i=1
µi · vh(xi), ∀µh ∈ Λjh(t), vh ∈ Wh. (31)
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(a) (b)

Figure 4: (a) A finite element triangulation of Bjh(t). (b) Set of nodes inside

Bjh(t) from the velocity grid and control points on ∂Bj(t) to enforce rigid body
motion by the collocation method.

The approach based on (30) and (31) makes little sense for the continuous
problem, but is meaningful for the discrete problem; it amounts to forcing the
rigid body motion of Bj(t) via a collocation method. A similar technique has
been used to enforce Dirichlet boundary conditions by F. Bertrand et al. (ref.

[9]). Moreover, the set of points {xi}
Nj

i=1 can be chosen as the set of nodes of
the velocity grid which are contained in Bj(t), at a distance of ∂Bj(t) ≥ c h
(with c ≈ 1), plus a set of control points located on ∂Bj(t) (see Figure 4(b) for
the case in which the Taylor–Hood element is used). This hybrid approach is
easier to implement and is particularly well suited when the boundary ∂Bj has
corners or edges.

Using the above finite dimensional spaces leads to the following
approximation of problem (23)–(28), (29):

For t > 0, find uh(t) ∈ Wh, with uh(t) = g0h(t) on Γ, ph(t) ∈ L2
0h(Ω),

Gj(t) ∈ Rd, Vj(t) ∈ Rd, φj(t) ∈ R3, ωj(t) ∈ R3, λjh(t) ∈ Λjh(t), such that

ρf

∫

Ω

[

∂uh

∂t
+ (uh · ∇)uh

]

· v dx + µ

∫

Ω
∇uh : ∇v dx −

∫

Ω
ph∇ · v dx +

∑J

j=1
(1 −

ρf

ρj
)Mj

dVj

dt
· Yj +

∑J

j=1
(1 −

ρf

ρj
)
d(Ijωj)

dt
· θj −

∑J

j=1
< λjh, v − Yj − θj ×

−−→
Gjx >jh = ρf

∫

Ω
g · v dx +

∑J

j=1

[

(1 −
ρf

ρj
)Mj g + Fr

j

]

· Yj +
∑J

j=1

−−−→
Gjxj × Fr

j · θj ,

∀ (v,Yj ,θj) ∈ W0h × R
d × R

3,

(32)
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∫

Ω
q∇ · uh dx = 0, ∀ q ∈ L2

h(Ω), (33)

< µj ,uh(t)−Vj(t)−ωj(t)×
−−−−→
Gj(t)x >jh= 0, ∀µj ∈Λjh(t), ∀ j = 1, ..., J, (34)

dGj

dt
= Vj ,

dφj

dt
= ωj ∀ j = 1, ..., J, (35)

Bj(0) = B0j , Gj(0) = G0j , Vj(0) = V0j , φj(0) = φ0j , ωj(0) = ω0j ,

∀ j = 1, ..., J,
(36)

uh(x, 0) = u0h(x),∀x∈Ωf (0) and uh(x, 0)=V0j +ω0j×
−−−→
G0jx,∀x∈B0j . (37)

In the previous formulation, g0h is an approximation on Γ of the boundary
function g0, belonging to the trace of Wh on Γ. This approximation must verify
∫

Γ g0h · n dΓ = 0.

2.5 Time discretization by operator splitting

Following A. Chorin (refs. [11]–[13]), most “modern” Navier–Stokes solvers are
based on operator splitting schemes (see, e.g., refs. [31], [70]) in order to force
the incompressibility condition via a Stokes solver or a L2–projection method.
This approach still applies to the initial value problem (32)–(37) which contains
five numerical difficulties to each of which can be associated a specific operator,
namely

(a) The incompressibility condition and the related unknown pressure.

(b) An advection term.

(c) A diffusion term.

(d) The rigid body motion of Bj(t) and the related multiplier λj(t).

(e) The collision terms Fr
j .

The operators in (a) and (d) are essentially projection operators. ¿From an
abstract point of view, problem (32)–(37) is a particular case of the following
class of initial value problems

dψ

dt
+

5
∑

i=1

Ai(ψ, t) = f, ψ(0) = ψ0, (38)

where the operators Ai can be multivalued. Among the many operator–splitting
methods which can be employed to solve problem (38) we advocate (following,
e.g., [48]) the very simple one below; it is only first order accurate but its
low order accuracy is compensated by good stability and robustness properties.
Actually, this scheme can be made second order accurate by symmetrization
(see, e.g., [7], [17] for the application of symmetrized splitting schemes to the
solution of the Navier–Stokes equations).
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A fractional step scheme à la Marchuk–Yanenko: Let -t(> 0) be a time
discretization step, given ψ0 = ψ0, compute ψn+1 from ψn via

ψn+i/5 − ψn+(i−1)/5

-t
+ Ai(ψ

n+i/5, tn+1) = fn+1
i , (39)

for i = 1, 2, 3, 4, 5 with tn = n-t and
∑5

i=1 fn+1
i = fn+1.

Applying scheme (39) to the problem (32)–(37), we obtain the following
scheme (after dropping some of the subscripts h): Given u0 = u0h, V0

j , ω
0
j , B0

j ,
G0

j , and assuming we know un, Vn
j , ωn

j , Bn
j , Gn

j , for n ≥ 0,

Step 1. Find un+1/5 ∈ Wh with un+1/5 = gn+1
0h on Γ, and pn+1/5 ∈ L2

0h such
that

ρf

∫

Ω

un+1/5 − un

∆t
· v dx −

∫

Ω
pn+1/5

∇ · vdx = 0, ∀v ∈ W0h,
∫

Ω
q∇ · un+1/5dx = 0, ∀ q ∈ L2

h,

(40)

Step 2. Next, find un+2/5 = u(tn+1), where u(t) is the solution on (tn, tn+1) of
the following advection problem

∫

Ω

∂u(t)

∂t
· v dx +

∫

Ω
(un+1/5 · ∇)u(t) · v dx = 0 ∀v ∈ W n+1,−

0h ,

u(tn) = un+1/5, and u(t) = g0h(tn+1) on Γn+1
− × (tn, tn+1),

(41)

with Γn+1
− = {x |x ∈ Γ, gn+1

0h · n(x) < 0} and

Wn+1,−
0h = {v |v ∈ Wh, v = 0 on Γn+1

− }.

Step 3. Find un+3/5 ∈ Wh with un+3/5 = gn+1
0h on Γ such that

∫

Ω

un+3/5 − un+2/5

-t
·v dx+µ

∫

Ω
∇un+3/5 : ∇v dx =

∫

Ω
g·vdx, ∀v ∈W0h. (42)

Step 4. Predict the motion of the center of mass and the angular velocity of the
rigid bodies via the solution on (tn, tn+1) of

(1 −
ρf

ρj
)Mj

dVj

dt
= (1 −

ρf

ρj
)Mjg + Fr

j ,

(1 −
ρf

ρj
)
d(Ij ωj)

dt
=

−−−→
Gjxj × Fr

j ,

dGj

dt
= Vj(t),

dφj

dt
= ωj(t),

Vj(t
n) = Vn

j , ωj(t
n) = ωn

j , Gj(t
n) = Gn

j ,

(43)
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for j = 1, ..., J , and set V
n+4/5
j = Vj(tn+1), ω

n+4/5
j = ωj(tn+1), G

n+4/5
j =

Gj(tn+1), un+4/5 = un+3/5.

Step 5. With the center G
n+4/5
j obtained at the above step, we enforce the rigid

body motion in the region Bj(tn+4/5) occupied by the rigid body. So we look

for un+1 ∈ Wn+1
h , Vn+1

j ∈ R3, ωn+1
j ∈ R3, and λ

n+4/5
j ∈ Λn+4/5

jh , such that

ρf

∫

Ω

un+1 − un+4/5

-t
· v dx +

J
∑

j=1

(1 −
ρf

ρj
)Mj

Vj
n+1 −V

n+4/5
j

-t
· Yj +

J
∑

j=1

(1 −
ρf

ρj
)
(Ij ωj)n+1 − (Ij ωj)n+4/5

-t
· θj =

J
∑

j=1

< λ
n+4/5
j ,v − Yj − θj ×

−−−−−−→
G

n+4/5
j x >jh,

∀v ∈ V0h,Yj ∈ R
d, θj ∈ R

3,

< µj ,u
n+1 − Vn+1

j − ωn+1
j ×

−−−−−−→
G

n+4/5
j x >jh= 0, ∀µj ∈ Λn+4/5

jh .

(44)

Problems (40) and (44) are finite dimensional linear problems with the
structure

{

Ax + Bty = b,

Bx = c,
(45)

where matrix A is symmetric; actually matrix A associated to problem (40) is
positive definite, while matrix A associated to problem (44) is positive definite
if ρj > ρf , ∀ j = 1, ..., J . Problems such as (45) are known as Kuhn–Tucker or
(saddle–point) systems and their iterative solution by Uzawa/conjugate gradient
algorithms is discussed with many details in, e.g., [20] and [24]. The solution
of problems (40) and (44) by the algorithms in [20] and [24] is discussed, again
with many details, in [25], [27], [28], and [29].

Problem (42) is a discrete elliptic system whose iterative or direct solution
is a quite classical problem. On the other hand, solving the pure advection
problem (41) is a more delicate issue. Problem (41) can be solved by a method of
characteristics as in [31] and [56]. An easy–to–implement alternative is provided
by the wave–like equation method discussed in [17] and [18]. Problem (43) is
solved by a subcycling and predicting–correcting technique with local time time
step ∆t/N as in [30]. In fact, one of the main advantages of the operator–
splitting methodology is that it allows the use of time steps much smaller than
∆t to predict and correct the position velocity and of the centers of mass, as well
as the angular velocity and orientation of the rigid bodies. For our calculations
we have taken N = 10 or 20. Observe that, between collisions Fr

j = 0, and it is
possible to obtain an exact solution of system (43).
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3 Fluid flow with free boundaries

In this section we discuss a methodology for the numerical solution of a
time–dependent two–dimensional viscous free–surface flow with applications to
lubrication and coating technology. This methodology combines finite element
approximation, time discretization by operator–splitting, and a Taylor–Galerkin
scheme for the relocation of the free boundary. A nice feature of this approach
is that it avoids iterative procedures to update the position of the free boundary,
and that a stable isoparametric finite element approximation of low order is used
to handle the geometry of the curved domain. The structure of the discrete
equations is the same as in the fixed boundary case, so that we can extend
existing Navier–Stokes solvers to the solution of these new problems. The above
methodology is applied to the solution of two–dimensional viscous free–surface
flow, with potential applications to coating flow.

Many flow problems in physics and applied sciences lead to the
incompressible Navier–Stokes equations with a free capillary surface. These
flows have many important industrial applications. From the great variety
of possible applications we mention the so called “coating flows” [45], [58],
and flow in semiconductor melts [5], [67]. On a capillary free surface the
normal stress of the flow field is balanced by surface tension. These flows
are modeled under the assumption that the surface tension is proportional to
the curvature of the free surface, therefore surface tension plays a significant
role in determining the shape of the free surface. This model has been
studied extensively experimentally [59], theoretically [3], [6], [50], [61], [68],
asymptotically [44], and numerically [4], [15], [43], [62], [66]. In particular, an
interesting discussion of a flow down an inclined perturbed plane can be found
in [60]; it includes a detailed comparison between experimental measurements,
lubrication approximations, and numerical results.

The numerical methods most widely used today rely on space approximation
by Galerkin/finite element methods for the following reasons: formulated in
this way, the free surface problem takes an elegant and concise form with
the boundary condition incorporated within the equations in a straightforward
manner; these methods are particularly well–suited to coping with the highly
deformed free boundaries and irregular flow domains that arise in these
problems. Discretizing these kind of problems causes additional numerical
difficulties due to the free boundary curvature related terms, and the fact
that the solution domain is not known in advance. It is well known that
the most crucial issue in these problems is the treatment of the curvature
terms. Thus, many authors prefer to treat these terms in an implicit way, and
generally a kind of iterative procedure is applied to locate the free surface.
In addition, isoparametric quadratic finite element approximations are very
common along with a quadratic or cubic parametrization of the free surface
which leads to additional complications. Analysis of the convergence properties
and/or stability of some computational techniques can be found in e.g. [4], [49],
and [65].

The numerical solution of free boundary problems is still an active field
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of research and new efficient computational methods are needed to solve this
kind of problems. In this work we consider the numerical solution of a
time–dependent two–dimensional viscous free–surface flow with applications
to lubrication and coating technology; its formulation is given in Section 3.1.
We take advantage of operator splitting methods, as shown in Section 3.2,
to avoid iterative procedures for locating the free boundary; generally these
procedures are quite costly for practical calculations. In addition, the global
variational formulation is modified to decouple the two velocity components
from the deformation tensor, resulting in a significant simplification from
the computational point of view. Then, in Section 3.3, we introduce an
isoparametric version of the Bercovier–Pironneau finite element method ([10],
[21]) to achieve the space discretization. The resulting discrete equations
have the same structure as in usual problems modeled by the Navier–Stokes
equations, with, however, an additional equation taking care of the relocation
of the free surface.

3.1 Formulation of the problem

Let Ω(t) be a two–dimensional space region, periodic in the horizontal direction,
which contains an incompressible viscous fluid of density ρ, with a free capillary
surface γ(t) as shown in Figure 5. We shall assume that the free boundary
γ(t) can be described by a time dependent function η(x1, t), x1 ∈ [0, L], t ≥ 0.
Assuming that the only external force acting on the fluid is gravity, denoted
by g, the fluid flow is modeled by the Navier–Stokes equations completed by
appropriate initial and boundary conditions:

Ω (t)

L x 1

x 2

H

0

γ (t)

Figure 5: Flow region with a free boundary
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ρ

[

∂u

∂t
+ (u · ∇u)

]

= ρg + ∇ · σ in Ω(t), 0 < t ≤ T, (46)

∇ · u = 0 in Ω(t), 0 < t ≤ T, (47)

u(x, 0) = u0(x), ∀x ∈ Ω(0), (48)

u(x1, 0, t) = 0, ∀ t ∈ (0, T ), x1 ∈ (0, L), (49)

u(0, x2, t) = u(L, x2, t), ∀ t ∈ (0, T ), x2 ∈ (0, η(0, T )), (50)

σn = s H(η)n on γ(t), with s ∈ R, (51)

∂η

∂t
n2 = u · n on γ(t), with η(0, t) = η(L, t), 0 < t ≤ T, (52)

where u denotes the velocity of the fluid, σ = µ [∇u + (∇u)t] − p I is the
stress–tensor for a Newtonian fluid of viscosity µ and pressure p; we denote
by n = (n1, n2) the unit normal vector on the boundary of Ω(t) and pointing
outward to the flow region. The initial velocity u0(x) is periodic at x1 = 0 and
x1 = L and satisfies ∇ · u0 = 0. Also, in (50) we assume η(0, T ) = η(L, T ). In
the above model, s is the coefficient of surface tension, and H(η) is the curvature
of the free boundary, defined by

H(η) =
∂2η

∂x2
1

/(

1 +

∣

∣

∣

∣

∂η

∂x1

∣

∣

∣

∣

2)3/2

. (53)

3.2 Time discretization by operator splitting

Suppose that at an arbitrary time t we know the flow region Ω(t). We introduce
the following test function space:

V0(t) = {v |v ∈ (H1(Ω(t)))2, v = 0 if x2 = 0,v periodic at

x1 = 0 and x1 = L}.
(54)

The variational formulation of equations (46)–(51) is:

ρ

∫

Ω(t)

[

∂u

∂t
+ (u · ∇u)

]

· v dx + 2µ

∫

Ω(t)
D(u) : D(v) dx −

∫

Ω(t)
p∇ · v dx =

ρ

∫

Ω(t)
g · v dx + s

∫

γ(t)
H(η(t))n · v dγ(t), ∀v ∈ V0(t),

(55)

∫

Ω(t)
q ∇ · u dx = 0, ∀ q ∈ L2(Ω(t)), (56)

∂η

∂t
+ u1

∂η

∂x1
= u2, on γ(t), with η(0, t) = η(L, t), 0 < t ≤ T, (57)

where D(u) = 1
2 [∇u + (∇u)t] is the deformation tensor, see [22] for more

details.
Operator–splitting methods apply to this problem which contain three

numerical difficulties, namely: (a) the incompressibility condition and the
related unknown pressure, (b) an advection term, and (c) the relocation of the
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free boundary. We apply again a fractional step scheme à la Marchuk–Yanenko
([48]). First, we define the following space of test functions which is used in the
scheme below:

W
n+1/4
− = {v | v ∈ (H1(Ωn))2,v = 0 on Γn+1/4

− , v periodic at x1 = 0

and x1 = L},
(58)

with
Γn+1/4
− = {x | x ∈ γn, un+1/4 · n(x) < 0}. (59)

Then, the scheme after operator–splitting reads as follows: Let -t be a time dis-
cretization step, and Ωn = Ω(n-t), ηn = η(n-t), un = u(n-t), γn = γ(n-t),
Vn

0 = V0(n-t). For n ≥ 0, un, ηn, Ωn, γn being known, solve the following
problems:

Find un+1/4 ∈ Vn
0 and pn+1/4 ∈ L2(Ωn) such that

ρ

∫

Ωn

un+1/4−un

-t
· v dx +

µ

2

∫

Ωn

∇un+1/4 : ∇v dx −

∫

Ωn

pn+1/4
∇ · v dx =

s

∫

γn

H(ηn)n · v dγn +

∫

Ωn

g · v dx −
µ

2

∫

Ωn

(∇un)t : ∇v dx ∀v∈Vn
0 ,

∫

Ωn

q ∇ · un+1/4 dx = 0, ∀ q ∈ L2(Ωn).

(60)

Compute un+2/4 via the solution of the following pure advection problem on
Ωn × (tn, tn+1)

∫

Ωn

∂u

∂t
· v dx +

∫

Ωn

(un+1/4 · ∇)u · v dx = 0, ∀v ∈ W
n+1/4
− ,

u(tn) = un+1/4,

u(t) = un+1/4 on Γn+1/4
− × (tn, tn+1),

and set un+2/4 = u(tn+1).

(61)

Next, find un+3/4 ∈ Vn
0 and pn+3/4 ∈ L2(Ωn), by solving the problem

ρ

∫

Ωn

un+3/4 − un+2/4

-t
· v dx +

µ

2

∫

Ωn

∇un+3/4 : ∇v dx−
∫

Ωn

pn+3/4
∇ · v dx = −

µ

2

∫

Ωn

(∇un+2/4)t : ∇v dx ∀v ∈ Vn
0 ,

∫

Ωn

q ∇ · un+3/4 dx = 0, ∀ q ∈ L2(Ωn).

(62)

Update the position of the free surface by solving

∂η

∂t
+ un+3/4

1

∂η

∂x1
= un+3/4

2 , for x1 ∈ [0, L), t ∈ (tn, tn+1),

η(x1, t
n) = ηn(x1),

η(0, t) = η(L, t), ∀t ∈ (tn, tn+1),

(63)
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and define ηn+1 as the regularization of η(tn+1) obtained by the projection onto
the space of the H1–periodic functions defined on [0, L].

With the new free boundary described by ηn+1, we define the new domain
Ωn+1 by mapping the reference domain Ω̃ = (0, L)×(0,H) onto the new domain
using the bijective transformation F : Ω̃ −→ Ωn+1, (x1, x2) = F(ξ1, ξ2) defined
by

x1 = ξ1,

x2 = ξ2
ηn+1(ξ1)

H
.

(64)

So, in the last fractional step, we “transport” un+3/4 from Ωn to Ωn+1 to obtain
un+1. More precisely, we define un+1 on Ωn+1 from un+3/4 (defined on Ωn) as

un+1(x1, x2) = un+3/4

(

x1, x2
ηn(x1)

ηn+1(x1)

)

= un+3/4

(

ξ1, ξ2
ηn(ξ1)

H

)

, (65)

with ξ1 and ξ2 given by the inverse transformation of the one defined by (64).

Remark 6 In the above formulation we have decoupled the two velocity
components from the deformation tensor using the property

∫

Ω(t)
D(u) : D(v) dx =

1

2

∫

Ω(t)
∇u : ∇v dx +

1

2

∫

Ω(t)
(∇u)t : ∇v dx, ∀v ∈ V0(t),

and evaluated the second integral with the velocity at the previous splitting step,
obtaining a significant simplification from the computational point of view.

3.3 Finite Element Approximation

At time tn the domain Ωn is non–polygonal, because of the curved free boundary
γn. We here use an isoparametric version (discussed in, e.g., [21] Chapter
5) of the finite element method used in [10], where P1 iso P2 and P1 finite
element approximations are used to approximate the velocity field and pressure,
respectively. Suppose that Th is a triangulation of Ωn and that it has been
decomposed as Th = T0h

⋃

T1h where

T0h = {T |T ∈Th, T has two vertices on ∂Ωn and their related edge is

curved},
(66)

T1h = {T |T ∈ Th, the three edges of T are rectilinear}. (67)

Every curved triangle T ∈ T0h is approximated by the quadrilateral T̃ defined
by a1T , a2T , a23T , a3T , where a23T is the mid–point of the arc defined by
(a2T , a3T ), or an approximation of this mid–point, as shown in Figure 6. The
quadrilateral T̃ is decomposed in four sub–triangles KiT , i = 1, 2, 3, 4, and we
define the six–dimensional space

P̃2(T ) = {q | q ∈ C0(T ), q|KiT
∈ P1 ∀ i = 1, 2, 3, 4}, (68)
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a
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a
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K

KK1T 4T

2T

3T

1T

2T

23T

3T

13T

12T

Figure 6: Approximation of a curved triangle T by T̃ =
⋃4

i=1 KiT .

and the three–dimensional subspace of P̃2(T )

P̃1(T ) = {q | q∈ P̃2(T ), q(aijT ) =
q(aiT )+q(ajT )

2
, ∀ 1 ≤ i, j ≤ 3, i .= j}, (69)

where P1 denotes the space of polynomials of degree ≤ 1. We use above the
convention aijT = ajiT , ∀ i, j, i .= j. Of course, if T ∈ T1h, then T̃ = T , and
therefore P̃2(T ) and P̃1(T ) are still defined as before. Let Ωn

h be the interior
of the union of all quadrilaterals and rectilinear triangles, then we define the
pressure and velocity finite element spaces as

Pn
h = {qh | qh ∈ C0(Ω

n
h), qh|T ∈P1, ∀T ∈T1h, qh|T̃ ∈ P̃1(T ), ∀T ∈T0h}, (70)

V n
h = {vh | vh ∈ (C0(Ω

n
h))2, vh|T ∈(P̃2(T ))2, ∀T ∈T1h, vh|T̃ ∈(P̃2(T ))2,

∀T ∈T0h},
(71)

respectively. We just incorporate periodicity to define the discrete analogues

of the spaces V n
0 and W

n+1/4
− on Ωn

h that we denote by V n
0h and W

n+1/4
h− ,

respectively. Concerning the pressure we introduce L2
P n

h
defined (with obvious

notation) by:

L2
P n

h
= {qh|qh ∈ Pn

h , qh periodic at x1 = 0 and x1 = L}.

Then, the fully discrete problem reads as follows:

Find u
n+1/4
h ∈ Vn

0h and pn+1/4
h ∈ L2

P n
h

such that

ρ

∫

Ωn
h

u
n+1/4
h −un

h

-t
· vh dx +

µ

2

∫

Ωn
h

∇u
n+1/4
h : ∇vh dx −

∫

Ωn
h

pn+1/4
h ∇ · vh =

s

∫

γn
h

H(ηn
h)n·vh dγn

h +

∫

Ωn
h

g·vh dx −
µ

2

∫

Ωn
h

(∇un
h)t :∇vh dx, ∀vh∈Vn

0h,

∫

Ωn
h

qh ∇ · un+1/4
h dx = 0, ∀ qh ∈ L2

P n
h
.

(72)



70 L.H. Juárez, R. Glowinski and T.W. Pan

Compute u
n+2/4
h via the solution of the following advection problem on

Ωn
h × (tn, tn+1)

∫

Ωn
h

∂uh

∂t
· vh dx +

∫

Ωn
h

(un+1/4
h · ∇)uh · vh, dx = 0, ∀vh ∈ W

n+1/4
h− ,

uh(tn) = u
n+1/4
h ,

uh(t) = u
n+1/4
h (t) on Γn+1/4

h− × (tn, tn+1),

and set u
n+2/4
h = uh(tn+1).

(73)

Next, find u
n+3/4
h ∈ Vn

0h and pn+3/4
h ∈ L2

P n
h

so that

ρ

∫

Ωn
h

u
n+3/4
h −u

n+2/4
h

-t
·vh dx +

µ

2

∫

Ωn
h

∇u
n+3/4
h :∇vh dx −

∫

Ωn
h

pn+3/4
h ∇ · vh =

−
µ

2

∫

Ωn
h

(∇u
n+2/4
h )t : ∇vh dx, ∀vh ∈ Vn

0h,

∫

Ωn

qh ∇ · un+3/4
h dx = 0, ∀ qh ∈ L2

P n
h
.

(74)

Update the position of the free surface by solving

∂ηh
∂t

+ un+3/4
1h

∂ηh
∂x1

= un+3/4
2h , x1 ∈ [0, L), t ∈ (tn, tn+1),

ηh(x1, t
n) = ηn

h(x1),

ηh(0, t) = ηh(L, t), t ∈ (tn, tn+1),

(75)

and define ηn+1
h as the solution of this problem.

Find the new discrete domain Ωn+1
h , (76)

by using the analogous transformation to (64) with ηn+1
h .

“Transport” u
n+3/4
h from Ωn

h to Ωn+1
h , (77)

to obtain un+1
h on Ωn+1

h , in a similar way as in (65).

Remark 7 The boundary integrals s
∫

γ H(η)n · v dγ in (72) are evaluated in
the following way:

∫

γ
H(η)n1 v1 dγ = −

∫ L

0

(

1 +

∣

∣

∣

∣

∂η

∂x1

∣

∣

∣

∣

2)−1/2 ∂v1

∂x1
dx1, (78)

∫

γ
H(η)n2 v2 dγ = −

∫ L

0

∂η

∂x1

(

1 +

∣

∣

∣

∣

∂η

∂x1

∣

∣

∣

∣

2)−1/2 ∂v2

∂x1
dx1. (79)

where v = v(x1, η(x1)) is periodic at x1 = 0 and x1 = L. These integrals
contain only first order derivatives, then low–order basis functions (first order
in the present case) can be used for their approximation.
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Remark 8 Problems like (75) are solved using a second order Taylor–Galerkin
discretization on [0, L) × (tn, tn+1), namely

∫ L

0
(ηn+1−ηn)φ dx1 = -t

∫ L

0

(

u2−u1
∂ηn

∂x1

)

φ dx1 −
1

2
-t2

∫ L

0
u1
∂u2

∂x1
φ dx1

−
1

2
-t2

∫ L

0
u1
∂ηn

∂x1

(

∂u1

∂x1
φ+ u1

∂φ

∂x1

)

dx1.

(80)

where the integrals are approximated using linear piecewise polynomial functions
associated to the velocity finite element space. That is, we use the vertices of
the isoparametric approximation of velocity at the free surface γn.

Remark 9 At every time step we map a regular mesh from the reference
domain Ω̃ = (0, L) × (0,H) onto the new discrete domain Ωn+1

h using the
bijective transformation (64) with ηn+1

h instead of ηn+1.

The saddle–point systems (72) and (73) are solved by an Uzawa/conjugate
gradient algorithms, discussed in [20] and [24]. The pure advection problem
(73) is solved by a wave–like equation method discussed in [17] and [51] (see
also [21], Chapter 6).

4 Sedimentation of circular bodies in a Newtonian
incompressible fluid

In this section we consider the numerical simulation of the sedimentation of
circular rigid bodies in a rectangular cavity Ω ∈ R2 filled with a incompressible
Newtonian viscous fluid. The main goal of these experiments is to validate
or cross–validate the methodology described in Section 2, as we compare the
numerical results obtained when the Taylor–Hood and Bercovier–Pironneau
finite element approximations are used in the simulation. An important part of
the computational experiments is the simulation of particle–fluid interaction as
well as particle/particle and particle/wall collisions.

4.1 Sedimentation of a circular disk

We simulate the fall of a rigid circular disk in a two–dimensional bounded cavity
filled with an incompressible Newtonian viscous flow. Simulating the impact of
the disk with the bottom boundary of the cavity is part of the computational
experiments.

The computational domain is the rectangular cavity Ω = (0, 2)× (0, 6), and
the circular disk has density ρ1 = 1.5 and diameter 0.25. The fluid density is
ρf = 1.0, and its viscosity is µ = 0.01. At time t = 0, the body is located at
(1, 4), and released from rest under the action of gravity. The discretization
parameters used in the computational experiments are ∆t = 0.001, and the
velocity mesh size h = 1/64 and h = 1/128 when the Taylor–Hood and
Bercovier–Pironneau finite element approximations are used, respectively.
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t = 0.4t = 0.3t = 0.2    t = 0

Figure 7: Particle position and flow visualization. Bercovier–Pironneau
approximation.

t = 0 t = 0.2 t = 0.3 t = 0.4

Figure 8: Particle position and flow visualization. Taylor–Hood approximation.

On Figures 7 and 8 we have visualized the particle position and associated
flow (vector velocity field) at times t = 0, t = 0.2, t = 0.3 and t = 0.4, obtained
with the Bercovier–Pironneau and Taylor–Hood finite element approximations,
respectively. Figure 9 shows a comparison of the time histories of the x1–
coordinate and x2–coordinate of the center of the disk, and of the horizontal
and vertical components of its translational velocity. The above figures show
that, in practice, the disk quickly reaches a uniform falling velocity until it hits
the bottom of the cavity, and that a symmetry breaking takes place with the disk
moving slightly on the right, away from the vertical symmetric axis of the cavity.
The computed results show that there is a good agreement for the two finite
element approximations. In particular, the maximum particle Reynolds number
(Rep = ρ1 0.25max|Vy|/µ) obtained is 452.1 for the Bercovier–Pironneau
approximation and 466.8 for the Taylor–Hood approximation, which is a quite
good quantitative agreement considering we are dealing with a highly nonlinear
phenomenon involving symmetry breaking. Actually, in a previous result
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Figure 9: Histories of the x1 and x2 coordinates of the center of the disk (top
figures). Histories of the horizontal and vertical coordinates of the translational
velocity (bottom figures). Solid line: Bercovier–Pironneau approximation.
Dashed line: Taylor–Hood approximation.

reported in [30] for this experiment with discretization parameters h = 1/384
and ∆t = 0.0005 and the Bercovier–Pironneau approximation a maximum
Reynolds number of 466 was found, which agrees very well with the result above
obtained by the Taylor–Hood approximation. Further information concerning
the computer implementation of the methods to solve these kind of problems
can be found, e.g., [21] and [30].

4.2 Sedimentation and interaction of two circular disks

The objective of this test problem is to simulate the motion and interaction
of two identical rigid circular disks sedimenting in a vertical channel. The two
disks are initially at rest on the axis of the channel with a distance between
their centers of one disk diameter. We expect the simulations to reproduce the
well documented drafting, kissing and tumbling phenomenon. This fundamental
phenomenon for Newtonian incompressible viscous flows has been observed
in laboratory experiments and also via simulations based on computational
methods different from those used here (see, for instance, [19], [63]).

Figures 10 and 11 shows the motion of two circular particles of density
ρ1 = ρ2 = 1.5, falling in an incompressible viscous fluid of density ρf = 1.0
and viscosity µ = 0.01. The computational domain is Ω = (0, 2) × (0, 6), and
the diameter of the particles is 0.25. The circular particles are released from
rest with centers initially at (1, 4.5) and (1, 5), respectively. The simulations
were performed with a time step -t = 0.001 in both cases. The size of the
velocity meshes were h = 1/128 and h = 1/64, when the Bercovier–Pironneau
and Taylor–Hood approximations were applied, respectively. In both figures the
drafting, kissing and tumbling phenomenon is clearly observed. The accepted
explanation of this phenomenon is as follows:
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t = 0 t = 0.15 t = 0.2 t = 0.3

Figure 10: Disks positions and flow visualization (Bercovier–Pironneau
approximation).

t = 0 t = 0.15 t = 0.2 t = 0.3

Figure 11: Disks positions and flow visualization (Taylor–Hood approximation).

The lower disk, when falling, creates a pressure drop in its wake. This
implies (if close enough) that the upper disk encounters less resistance (drag)
from the fluid than the lower one and settles faster. Falling faster, the upper
disk “kisses” the lower one. Once in contact or near contact, the two disks act
as an elongated body falling in an incompressible viscous fluid. As well known,
elongated bodies falling sufficiently fast in a Newtonian incompressible viscous
fluid have a tendency to rotate so that their broad side becomes perpendicular
to the main flow direction. Indeed rotation takes place, as seen in figures 10, 11,
at t = 0.2, but such two disks’ assemble is unstable and the two disks separate.

Figure 12 shows a comparison of the time evolution of the x1 and x2–
coordinates of the center of mass of the two disk, and of their translational
velocities (V1, V2). Figure 13 shows the time history of the separation distance
between the two disks. The maximum particle Reynolds numbers based on
maximum falling velocity are 677.7 and 706.5 obtained from the Bercovier–
Pironneau and Taylor–Hood approximations, respectively. Considering that the
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Figure 12: Histories of the x1 and x2 coordinates of the centers of the disks (left
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Figure 13: History of the distance between the two disks. Solid line: Bercovier–
Pironneau approximation. Dashed line: Taylor–Hood approximation.

dynamics is pretty fast and that the drafting, kissing and tumbling phenomenon
is pretty violent (see Fig. 12), the qualitative and quantitative agreement
between the computed results for the two approximations is quite good. Further
information about the results presented here can be found in [21], [30], [40].

4.3 Sedimentation and interaction of 100 circular disks

As last test problem with circular particles we consider the falling motion
of 100 circular disks in a Newtonian incompressible viscous fluid in a two
dimensional cavity. This problem differs from the previous ones in that
the number of particles is much larger. Indeed this test problem can be
viewed as a particulate flow problem, and the computational method method
discussed in Section 2 still apply to this more complicated situation. In fact,
results for the sedimentation of 6400 disks in a two–dimensional cavity and
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t = 1 t = 2

 t = 3 t = 4 t = 5

t = 0

Figure 14: Disks positions and flow visualization. Taylor–Hood approximation.

fluidization of 1204 spherical particles in a three–dimensional tube (bed) have
been obtained applying the same methodology and reported in see [52] and [53],
respectively. Those experiments were performed using the Bercovier–Pironneau
finite element approximation, because for these problems where many particle
“move around” a fine (uniform) mesh is required essentially everywhere, so that
fast Poisson solvers and fast elliptic solvers based in cyclic reduction methods
[32] are very convenient to solve these linear problems. The two and three–
dimensional discrete Poisson and elliptic problems obtained in the discretization
of those problems were solved using the package FISHPACK (see [2]). For the
cases where the Taylor–Hood approximation were used, we applied a sparse
matrix algorithm based on Markowitz’ method (Pissanetzky (1984)), requiring
more memory to storage these matrices, however we were able to solve the
sedimentation problem of as many as 504 particles in a two–dimensional cavity
([40]), but the time of computation increases quit a lot.
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Figure 14 shows the sedimentation and interaction of 100 disks of density
ρj = 1.01, j = 1, ..., 100, in an incompressible viscous fluid of density ρf = 1.0
and viscosity µ = 0.01. The computational domain is a closed channel with
dimensions Ω = (0, 1) × (0, 2), and the diameter of the disks is 0.0625. The
solid fraction in this test case is 15.34%. The particles are released from rest
with the initial arrangement shown in Figure 2 at t = 0. These results were
obtained by the Taylor–Hood approximation. At t = 1 and t = 2 we can observe
that the particles at the center of the channel fall faster than the other and the
liquid close the left and right walls is displaced to the vertical upper direction.
Between t = 2 and t = 4 a complicated recirculation phenomenon occurs and at
t = 5 almost all particles are settled at the bottom of the channel. Knowing that
problems with with many particles may exhibit a chaotic–like behavior where
instabilities may develop into many symmetry breaking and other bifurcation
phenomena, including drafting, kissing, and tumbling taking place at various
scales and times, this time we compare averages of the quantities describing the
dynamical behavior of the mixture. We solved the problem with the Bercovier–
Pironneau approximation and compared the results with the previous solution.
Figure 15 shows a comparison of the time history of the average x1 and x2

coordinates of the centers of the 100 disks and their average velocity, obtained
by the two methods. Again the agreement is satisfactory.
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Figure 15: Histories of the average x1 and x2 coordinates of the centers
of the 100 disks (left figures). Histories of the horizontal and vertical
coordinates of the translational average velocity of the 100 disks (right figures).
Solid line: Bercovier–Pironneau approximation. Dashed line: Taylor–Hood
approximation.
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5 Sedimentation of non–circular bodies in a Newtonian
incompressible fluid

One of the principal goals of these simulations is to check numerically the
well–known fact that when an elongated rigid body sediments in a Newtonian
incompressible fluid of sufficient small viscosity, it will rotate until its broad side
becomes horizontal. The numerical results shown in this section were obtained
using the methodology described in Section 2, and the pair {u, p} has been
approximated using the Taylor–Hood discrete velocity and pressure described in
Section 2.4. We consider two cases with elongated bodies: an elliptic body, and
a two–disk cluster. As a last example in this section, we include the numerical
simulation of the motion of an tripole–like rigid body (three–disk cluster) falling
in a Newtonian incompressible viscous fluid. This interesting example shows
how the distribution of mass and added moment of inertia, compared to a
simple cylinder (circular or elliptic), plays a significant role on the particle–
fluid interaction.

5.1 Sedimentation of an elliptic rigid body

We first consider the motion of an elliptic body, of density ρ1 = 1.25, falling
in a Newtonian incompressible viscous fluid of density ρf = 1.0, and viscosity
µ = 0.1. The computational domain is the rectangular cavity Ω = (0, 2)×(0, 6),
and the lengths of the major and minor axes of the ellipse are 0.5 and 0.25,
respectively. The body is released from rest with its center at (1, 4) and its
broad side in the vertical direction (φ0 = π/2). The simulation was performed
with a mesh size h = 1/32 and time step -t = 0.001. The results shown in this
section were first published in [38] and [21].

The sedimentation of this elliptic body and the associated flow is visualized
in Figure 16. Initially, the body moves vertically without rotation, then it
starts to rotate in the counterclockwise direction before it reaches its maximum
vertical velocity. The maximal Reynolds number of the flow (relative to the the
length of the major axis) is 45.27. Figures 16 and 17 show that this rotation is
quite sudden. As the elliptic body rotates it approaches the right wall, and its
falling velocity decreases dramatically due to the stronger drag force acting on
the rotated body. The higher stress on the right hand side of the body when
it is close to the wall due to lubrication forces, prevent the body to touch that
right wall, and it finally sediments on the bottom with its broad side horizontal.

We also computed the flow when the elliptic body is released from rest with
its broad side horizontal. This time the body sediments as shown in Figure 18.
At first glance, it seems that the body broadside stays horizontal during the
sedimentation. However Figure 19 shows small oscillations around the center
of mass, and small oscillating deviations from the symmetry vertical axis of the
cavity Ω. The body touches the bottom boundary at about t = 0.78, and the
maximum Reynolds number is 28.1. We observe also that the settling velocity
is essentially uniform for t ∈ (0.4, 0.6).
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t = 0.3t = 0 t = 0.4 t = 0.5 t = 0.6 t = 1

Figure 16: An elliptic body falling in a viscous fluid from a vertical initial
position.
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Figure 17: Histories of the x1 and x2 coordinates of the center of the elliptic
body, and of the rotation angle (left figures). Histories of the horizontal and
vertical coordinates of the translational velocity of the elliptic body, and of the
angular velocity (right figures).

T = 0.2 T = 1.0T = 0.8T = 0.6T = 0.4T = 0

Figure 18: A elliptic horizontal body falling in a viscous fluid.
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Figure 19: Histories of the x1 and x2 coordinates of the center of the elliptic
body, and of the rotation angle (left figures). Histories of the horizontal and
vertical coordinates of the translational velocity of the elliptic body, and of the
angular velocity (right figures).

5.2 Sedimentation of a two–disk cluster

We consider the direct numerical simulation of the sedimentation of a two–disk
cluster in the rectangular cavity Ω = (0, 2) × (0, 6) filled with a Newtonian
incompressible viscous fluid; the falling body is thus non–convex and its
boundary contains two cusps. This experiment has some similarity with the
drafting, kissing, and tumbling phenomenon discussed before. Indeed in this
phenomenon the two bodies form for a short while the two–body cluster very
similar to the one considered here. Also, this experiment has some similarities
with the experiment of the sedimentation of a elliptic body, as we will see below.
The numerical results shown below can be found in [21].

The cluster under consideration consists of two identical disks of diameter
0.25, rigidly attached to each other, forming thus an elongated non–convex
body of length 0.5. The fluid and solid characteristics are the same as in the
case of the sedimentation of the elliptic body: ρf = 1, ρ1 = 1.25, µ = 0.1,
the fluid being Newtonian and incompressible. The same mesh and finite
element approximation are used as in the previous experiment, and we still
have -t = 0.001. At time t = 0 the fluid and the rigid are at rest, with the
center of mass of the two–disk cluster located at (1, 4).

For the first simulation, we assumed that the broadside of the cluster is
vertical. The sedimentation of the body and the corresponding flow is visualized
in Figure 20, while on Figure 21 we have represented the time variation of the
horizontal and vertical displacements of the center of mass, of the angle rotation,
and of the corresponding velocities. The maximum Reynolds number of the fluid
flow in this case is 44.1.

For the second simulation, we assume that at time t = 0, the broadside of the
two–disk cluster is horizontal, everything else being the same. Figure 22 suggests
that the broadside stays horizontal during the sedimentation, but a close look
at Figure 23 suggests that the falling body suffers small oscillations around its
center the mass, and small oscillating deviations from the symmetry vertical
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t = 0 t = 0.4 t = 0.5 t = 0.55 t = 0.6 t = 1.0

Figure 20: Sedimentation of a two–disk cluster in a two–dimensional cavity
filled with a Newtonian incompressible viscous fluid.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

time
0 0.2 0.4 0.6 0.8 1

0

1

2

3

Vx

time

0 0.2 0.4 0.6 0.8 1
0

2

4

6

y

time
0 0.2 0.4 0.6 0.8 1

−8

−6

−4

−2

0

Vy

time

0 0.2 0.4 0.6 0.8 1

2

2.5

3

time

radi
ans

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

time

w

Figure 21: Histories of the x1 and x2 coordinates of the center of the two–disk
cluster, and of the rotation angle (left figures). Histories of the horizontal and
vertical coordinates of the translational velocity of the elliptic body, and of the
angular velocity (right figures).

axis of the cavity Ω. On the other hand, the settling velocity is essentially
uniform for t ∈ (0.4, 0.6) and the maximum Reynolds number of the fluid flow
is 31. The body touches the bottom boundary of Ω about t = 0.8.

We want to conclude this section by calling attention to the remarkable
similarities between the settling of the elliptic body and the settling of the two–
disk cluster. This is clear observing Figures 16, 20, and Figures 18, 22, as well
as Figures 17, 21, and Figures 19, 23.

5.3 Sedimentation of a tripole–like body

In this section we consider the direct numerical simulation of the motion of
a tripole–like rigid body ([41]), of density ρ1 = 1.25, falling in a Newtonian
incompressible viscous fluid of density ρf = 1.0, and viscosity µf = 0.01. The
computational domain is Ω = (0, 2) × (0, 12), and the lengths of the cylinders’
diameter that form the tripole–like rigid body is 0.25. As before the body is
non–convex, but this time its boundary contains six cusps. The body is released
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t = 0 t = 0.2 t = 0.4 t = 0.6 t = 1.0t = 0.8

Figure 22: Sedimentation of an horizontal two–disk cluster in a two–dimensional
cavity filled with a Newtonian incompressible viscous fluid.
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Figure 23: Histories of the x1 and x2 coordinates of the center of the two–disk
cluster, and of the rotation angle (left figures). Histories of the horizontal and
vertical coordinates of the translational velocity of the elliptic body, and of the
angular velocity (right figures).
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from rest with its center at (1, 11.5), and its leading cylinder (yellow) is placed
horizontally facing the right hand side wall (φ0 = 0). The simulation was
performed using the Taylor–Hood finite element approximation with a mesh
size h = 1/32 and time step -t = 0.001. The sedimentation of the tripole–
like body and the associated flow is shown in Figure 24. The velocity flow
field is described by the black arrows and the pressure field is described by color
contour plots. Red indicates the highest pressure and purple the lowest pressure
in this RGB scale. Actually, only the hydrodynamical pressure is shown, since
the hydrostatic pressure is so strong that there is not a significant difference
between highest and lowest pressures.

Due to its initial orientation, the rigid body starts to rotate almost
immediately in the clockwise direction. While falling down the body drifts to
the left until it “touches” the left wall. At this time (t = 0.44) the orientation of
the rigid is symmetrically similar to the initial orientation, and after separation
from the wall it rotates again in the clockwise direction, so that it approaches
the same wall one more time. This time (t= 0.83) the body touches the wall
with the leading cylinder ahead, and after separating from the wall it starts
to rotate in the opposite direction (counterclockwise). The rigid body then
drifts to the right and approaches the right wall. Before touching the right wall
the rigid body sediments with its leading cylinder on top and with the other
two cylinders touching the bottom. The strong recirculation behind the body
causes the body to move to the left after it reaches the bottom. Figure 24
shows a sequence of vortices generated by the motion of rigid body in the fluid.
The Reynolds number based on terminal vertical velocity is about 404, and it
hits the bottom boundary at t = 1.8 This shows that the motion of the body
depends on more than the flow field around it. Apparently the direction of
rotation of the rigid body is more associated with the distribution of mass and
the added moment of inertia than to the hydrodynamical forces and torques.
However, it is clear that the hydrodynamical forces on the system with the initial
conditions chosen are responsible for the initial symmetry breaking which starts
the rotation. A more detailed description of motion of the rigid body is shown
in Figure 25 which shows the histories of the position (x1, x2, φ) and velocity
(V1, V2, ω) of the rigid body. The oscillatory behavior of the horizontal and
vertical translation velocity is associated to the wake structure behind the body,
while the angular velocity behavior is more associated to the moment of inertia
of the body.

6 Flow past elliptic bodies in a two–dimensional channel

Here we present numerical results concerning flow past elliptic bodies in a two–
dimensional channel. We include the case of a flow past a freely rotating
two–dimensional elliptic body with its center fixed at the centerline of the
channel. This study was motivated by previous results ([42]) concerning the
direct simulation of freely rotating cylinders in viscous flows by a methodology
entirely different to the one used here. As a second example problem, we
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Figure 24: A tripole–like body falling in a viscous fluid.
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Figure 25: Histories of the x1 and x2 coordinates of the center of the rigid body,
and of the rotation angle (left figures). Histories of the horizontal and vertical
coordinates of the translational velocity of the rigid body, and of the angular
velocity (right figures).
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present the numerical results of the free motion of a elliptic pendulum in an
incompressible viscous fluid. More details can be found in [23].

6.1 Freely rotating two–dimensional elliptic body

We consider the flow past a freely rotating two–dimensional elliptic body in
the channel Ω = (−15, 40) × (−4, 4) filled with a viscous incompressible liquid
of density ρf = 1. The flow is assumed to move from left to right, and acts
on a rigid elliptic body of density ρ1 = 1.1, with center fixed at (0, 0). The
lengths of the major and minor axes of the elliptic body are a = 1 and b = 0.5,
respectively. The motion of the body is described by its angular position θ
(defined as the the angle of the major axes with the horizontal), and its angular
velocity ω = dθ/dt. Thus dV

dt = 0, g = 0 and Fr
1 = 0 in model (1)–(8). This

problem is solved for Reynolds numbers Re = 20, 100 and 200. The Reynolds
number is defined as Re = ρfUa/µ, where U is the maximum inlet velocity at
the upstream boundary. As initial conditions we choose θ0 = 0, ω0 = 0, and
u0 = 0. These problems are solved applying the Bercovier–Pironneau approach
on a non–regular mesh, with refinement in the region where the ellipse rotates,
as shown in Figure 26(a). The collocation points inside the elliptic body as well
as the collocation points chosen on its boundary are shown in Figure 26(b).
The time step is -t = 0.001 for all cases. For these meshes we are unable to
use the fast elliptic solvers. Instead we use a sparse matrix algorithm based on
Markowitz’ method [57].

For Re = 20 the elliptic body rotates counterclockwise so that its broad
side tends to be perpendicular to the flow direction, as qualitatively expected
[38]. The flow tends to a steady state and the elliptic body remains in its stable
vertical position θ = π/2, as shown in Figs. 27 and 28. For Re = 100
and 200 unsteady oscillatory solutions are obtained. The main feature of these
solutions is periodic oscillation of the elliptic rigid body around its vertical
position, as shown in Figures 29 and 31. These oscillations are associated with
vortex shedding behind the elliptic body (see Figures 30 and 32). Both, the
amplitude of the oscillations and the angular velocity of the elliptic body, are
larger at higher Reynolds number. Concerning the frequency, it is a common
practice to find the Strouhal number defined as St = 2fa/U , where f is the
frequency of the oscillations, and U and a are defined as before. For the cases
considered here we obtain St = 0.19 and St = 0.22 for Re = 100 and Re = 200,

a b

Figure 26: (a) Non–regular mesh for the velocity. (b) Collocation points: mesh
nodes inside the elliptic rigid body and points chosen on its boundary.
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Figure 27: Time history of the angle and of angular velocity of the ellipse.
Re = 20.
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Figure 28: Visualization of the pressure and velocity vector field at different
times. Re = 20.
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Figure 29: Time history of the angle and of angular velocity of the ellipse.
Re = 100.
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Figure 30: Visualization of the pressure and velocity vector field at different
times. Re = 100.
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Figure 31: Time history of the angle and of angular velocity of the ellipse.
Re = 200.

respectively. These results are consistent with previous results about a freely
rotating cylinder in a channel [42].

6.2 Hydrodynamic elliptic pendulum

Here we present the results of the free motion of a elliptic pendulum in an
incompressible viscous fluid. The hydrodynamic elliptic pendulum is defined
in the following way: the center G of the elliptic rigid body is constrained to
move on a circular trajectory around the fixed axis of rotation O, as shown in
Figure 33; simultaneously the elliptic body rotates freely around its center G.
This pendulum is placed in a channel where the flow direction is from left to
right. The position and orientation of the elliptic body are known at any time
by the angles θ and φ, respectively. The velocity of the rigid body is known
through the angular velocities ω = dθ/dt and ζ = dφ/dt. The elliptic body
has the same dimensions as in the previous examples. The axis of rotation of
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Figure 32: Visualization of the pressure and velocity vector field at different
times. Re = 200.
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Figure 33: A pendulum with a free to rotate elliptic body in a viscous fluid.

the pendulum is located at O = (−8, 0), and the length of the pendulum is

lp = |
−−→
OG| = 8. Equations (1)–(8) are simplified using the constraint relation

dV
dt = ζ lp (−sinφ, cosφ), and g = 0, Fr

1 = 0. The initial conditions are θ0 = 0,
φ0 = 0, ω0 = 0, ζ0 = 0, and u0 = 0. We solve the problem for Re = 200,
where Re is defined as before. The main feature of the solution is periodic
oscillation of the pendulum around its axes O coupled with periodic oscillation
of the elliptic body around its center G, as shown in Figure 34. The amplitude
of rotation of the rigid body around its center is about fifteen times larger than
the amplitude of rotation of the pendulum for this particular case. In fact, we
expect that the longer lp the shorter the amplitude of oscillation of the pendulum
[64]. These oscillations have the same frequency as the oscillations of the free
to rotate elliptic body for Re = 200 (see Figure 31). This corroborates that
the oscillations are strongly associated with vortex shedding behind the elliptic
body. The result is a synchronized periodic motion of both the pendulum and
body. Figure 35 shows, at different times, some snapshots of the pressure and
velocity vectors in a region near the body. However, a distinctive characteristic
of the solution here is that that the amplitude of rotation and angular velocity
of the elliptic body around its center G are significantly higher than those
obtained for a freely rotating elliptic body placed at the center of the channel.
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Figure 34: Time history of the angle and angular velocity of the pendulum
(top), and of the angle and angular velocity of the elliptic rigid body (bottom)
at Re = 200.
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Figure 35: Visualization of the pressure and velocity vector field at different
times. Hydrodynamic pendulum, Re = 200.

This phenomenon is due to the unsymmetrical shear, produced by the presence
of the channel walls, on the two sides of the elliptic body when it is off the
center line of the channel. When the elliptic body moves up the higher shear
on the upper part of the body introduce a net rotation (in addition to the
induced rotation by vortex shedding) in the clockwise direction, while when it
moves down the body gets an additional net rotation in the counterclockwise
direction. Again this is consistent with previous results found in [34] and [42].

7 Hydrodynamic circular pendula under the action of
gravity

In this section we consider the numerical simulation of the motion of pendula
in a Newtonian incompressible viscous fluid. The pendula are circular cylinders
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constrained to move in a circular trajectory as shown in Figure 36. The motion
of the cylinders are driven only by the hydrodynamical forces and gravity.
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Ωf
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l

Φ

Figure 36: Pendulum in a viscous fluid under the action of gravity

In the present calculations we allowed solid surfaces to touch and penetrate,
contrary to what was done in previous work. In fact, a good feature of the
methodology described in Section 2 is that the numerical solution does not break
down when the rigid bodies overlap. On the other hand, numerical methods in
which the computational domain is remeshed may break down when collision
occurs, because this would break the lattice modeling of the fluid [34]. Hence
a repulsive force between the particles need to be incorporated when they are
close to each other to prevent contact between surfaces. We did not introduce
these artificial repulsive forces here, in part because we wanted to investigate the
solutions when the rigid bodies are near collision or when they actually collide
and overlap. The mechanics of how solid particles in viscous liquids stick or
rebound has not been fully understood and is still subject of current research. It
has been demonstrated theoretically that when a perfect rigid sphere approaches
a rigid wall its kinetic energy is dissipated by non–conservative viscous forces.
The rate of close approach is asymptotically slow and the sphere do not deform
or rebound [14]. By simultaneously accounting for elastic deformation of the
body and viscous fluid forces, Davis et al. [16] showed that part of the incoming
particle kinetic energy is dissipated by fluid forces and internal solid friction, and
the rest is transformed into elastic–strain energy of deformation. Depending on
the fraction of the kinetic energy that becomes stored as elastic–strain energy,
the deformation of the spheres may be significant and rebound may occur.
The relevant parameter for the bouncing transition, which is often obtained
experimentally [37], is the Stokes number, which characterize the particle inertia
relative to viscous forces. Numerical results of colliding bodies in viscous fluids
may help to understand the mechanics of individual collisions in solid–liquid
flows, which is an important issue in particulate multi–phase flow modeling
and in the actual numerical computations of these flows. An interesting study
of pendula in viscous fluids with some applications can be found in [64] and
references therein.

The numerical experiments in this work include the motion of a single
pendulum, and the motion of two pendula in a two–dimensional rectangular
domain Ω = (−3, 3) × (−1, 1) filled with a viscous fluid of density ρf = 1. The
axis of rotation of the pendula is fixed at O = (0, 1), and the diameter of the
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Figure 37: The unstructured mesh

circular rigid bodies is 0.25 in all cases bellow. The two pendula case include
different numerical experiments where the disks may have different densities and
initial positions. Equations (1)–(8) are simplified by introducing the constraint

relation V = ω ×
−−→
GO = lω (cosφ, sinφ), and Fr

j = 0. The Taylor–Hood finite
element approximation was applied to these problems.

7.1 One pendulum

As a test case we consider one pendulum with a circular rigid body of density
ρ1 = 3 released from rest at φ0 = 1.4 radians in a liquid of viscosity µ = 0.005.
We solved this problem using two meshes: an unstructured mesh (Fig. 37) which
takes advantage of the fact that we know in advance the possible trajectory of
the rigid body, and a uniform mesh with space discretization step h = 1/64.
Figure 38 shows the comparison of the time history of the angle and of the
angular velocity obtained with the two meshes. The agreement is satisfactory.
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Figure 38: Comparison of the time history of the angle (left) and of the angular
velocity (right) obtained with the unstructured mesh (dashed line) and the
regular mesh (continuous line) for one pendulum

As expected, the pendulum exhibits damped oscillations around the vertical
position, and it goes to a steady position as time increases. The maximum
Reynolds number obtained (based on the maximum falling velocity and diameter
of the circular rigid body) was 835. Since the unstructured mesh has much less
velocity degrees of freedom than the regular mesh (13823 versus 49665), we used
the unstructured mesh in the subsequent calculations.

7.2 Two pendula

As a second example we consider two pendula. One pendulum with a circular
rigid body of density ρ1 = 1.1 is initially hold in the vertical position φ0

1 = 0,
and the other pendulum with density ρ2 = 5 is released from rest at φ0

2 = 1.4
radians in a liquid of viscosity µ = 0.005 . Figure 39 shows that, after a
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Figure 39: Velocity vector field and pressure at different times for the two
pendula with µf = 0.005, ρ1 = 1.1, and ρ2 = 5.

short time, the heavier cylinder collides with the lighter fixed body. After
collision the two bodies move together as a single body all the time. This
is more evident in in Figure 40 where the time history of the angle, angular
velocity, and separation distance is shown. The maximum Reynolds number
in this case was 1,085. We expected the two bodies to separate after they
reach the maximum negative angle since the heavier rigid body is below to the
lighter one at that position, and the action of gravity is stronger on the heavier
body. However they never separate after collision. The only forces in our model
problem that can prevent separation after collision are the viscous forces which
in this case seem to dominate. To corroborate this strong dependence from
viscous effects, we reduced the viscosity µ from 0.005 to 0.001 and repeated
the numerical calculation. Figure 41 shows that this time, after the two bodies
collide, they stick together until they reach the maximum negative angle (where
the angular velocity is close to zero), and then separate when they start to move
in the counterclockwise direction by the action of gravity. This is clearly shown
in Figure 42 where we plot the time history of angle, angular velocity, and
separation distance. The maximum Reynolds number this time was 5,800. It is
evident that a more detailed study of this and related phenomena is needed in
order to better understand the mechanics of particle collision in viscous liquids
and to generate models that simulate more accurately solid–liquid particulate
flows which are very important in applications.

8 Numerical simulation of a fluid flow with a free capillary
surface

We want to conclude this article by including the numerical results of the
Navier–Stokes equations modeling incompressible viscous fluid flow with a
capillary free–surface, obtained by applying the methodology described in
Section 3. For a more detailed description of this methodology and of the
numerical results see [22].
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Figure 40: Time history of the angle (top left), angular velocity (top right), and
separation distance (bottom) of the two pendula with µf = 0.005, ρ1 = 1.1,
and ρ2 = 5.
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Figure 41: Velocity vector field and pressure at different times for the two
pendula with µf = 0.001, ρ1 = 1.1, and ρ2 = 5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

di
st

t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−20

−15

−10

−5

0

5

10

ω

t
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.5

0

0.5

1

φ

t

Figure 42: Time history of the angle (top left), angular velocity (top right), and
separation distance (bottom) of the two pendula with µf = 0.001, ρ1 = 1.1,
and ρ2 = 5.
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8.1 Perturbed flow in an horizontal periodical plane

As a first example we consider the situation where a liquid of viscosity µ = 0.01
and density ρ = 1, occupies a periodic region in the plane, resting on an
horizontal line. The liquid is initially at rest but the free surface on top is
not in equilibrium. The surface tension coefficient is s = 1, and H = 1, L = 1.
The initial non–equilibrium position of the free surface is shown in Figure 46.
The discretization parameters are hp = 1/40 to approximate the pressure, so
that hv = 1/80 for the approximation of velocity and the free surface, and
-t = 0.00025. For t > 0 the coupled action of gravity and surface tension
produces a motion which leads to the equilibrium state η = 1 and u = 0
through an oscillating regime. Figure 43 shows the velocity fluid field and color
isobars of the pressure. Figure 44 shows the position of the free surface at
different times. We observe that the flow and the free boundary shape have a
qualitative behavior very similar to the one shown in [4], where the simulation
of a fluid flow in a three–dimensional annular container is considered.

8.2 Perturbed flow in an inclined periodical plane

As a second example, we consider the flow of a liquid of viscosity µ = 0.1,
density ρ = 1, and surface tension coefficient s = 1, in an 45 degrees inclined
periodic plane. To simplify the geometry, and still employ the methodology in
Section 5.1, we keep Ω as above and give the gravity vector a 45o inclination. In
this frame we choose H = 1, L = 0.15, and the initial non–equilibrium position
of the free surface is similar as in the previous case and shown in Figure 46.
This time we chose hp = 1/200 to approximate pressure, so that hv = 1/400
to approximate velocity and the free surface, and -t = 0.00025. The velocity
vector field and pressure (color) contours at different times are shown in Figure
45. The shape of the free surface at different times is shown in Figure 46.
This time the equilibrium solution of the problem for velocity u is a Poiseuille
distribution with u = 0 only along the plane and maximum velocity taking
place along η = 0.15. Computations done with a mesh twice coarser provide
essentially the same results, suggesting that for hp = 1/200 and hv = 1/400 a
pretty accurate solution has been obtained.
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Figure 43: Velocity and pressure at different times for Example 1.
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Figure 45: Velocity and pressure at different times for Example 2.
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[23] R. Glowinski, L. H. Juárez and T. W. Pan (2003). On the numerical
simulation of incompressible viscous fluid flow around moving rigid bodies
of elliptical shape. In Numerical Simulation of Incompressible Flows,
edited by M. M. Hafez, World Scientific Pub. Co., Singapure, 179–202.

[24] R. Glowinski, and P. Le Tallec (1989). Augmented Lagrangians and
Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia.

[25] R. Glowinski, T. I. Hesla, D. D. Joseph and T.W. Pan (1997). Distributed
Lagrange multiplier methods for particulate flow. In Computational
Science for the 21st Century, edited by M.O. Bristeau, G.J. Etgen, W.
Fitzgibbon, J. Périaux and M.F. Wheeler, Wiley, Chichester, 270–279.



Moving and Free Boundaries 99

[26] R. Glowinski, T. W. Pan, T. I. Hesla and D. D. Joseph (1999). A
distributed Lagrange multiplier/fictitious domain method for particulate
flow, Int. J. of Multiphase Flow, 25, 5, 755–794.

[27] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux (1998).
A fictitious domain method with distributed Lagrange multipliers for
the numerical simulation of particulate flow. In Domain Decomposition
Methods 10, edited by J. Mandel, C. Farhat and X.C. Cai, AMS,
Providence, RI, 121–137.

[28] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux (1999). A
distributed Lagrange multiplier/fictitious domain method for flows around
moving rigid bodies: Application to particulate flow, Int. J. Numer. Meth.
Fluids, 30, 1043–1066.

[29] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux (2000).
A distributed Lagrange multiplier/fictitious domain method for the
simulation of flows around moving rigid bodies: Application to particulate
flow, Comput. Meth. Appl. Mech. Eng., 184, 241–267.

[30] Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. and Periaux, J.
(2001). A Fictitious domain Approach to the Direct Numerical Simulation
of Incompressible Viscous Flow Past Moving Rigid bodies: Application
to Particulate Flow, J. Comput. Phys., 169, 363–426.

[31] R. Glowinski and O. Pironneau (1992). Finite element methods for the
Navier–Stokes equations, Annual Rev. Fluid Mech., 24, 167–204.

[32] G.H. Golub, C. Van Loan (1996). Matrix Computations, 3rd. edition,
Johns Hopkins University Press, Baltimore MD.

[33] K. Hofler, M. Muller, S. Schwarzer and B. Wachman (1998). Interacting
particle–liquid systems. In High Performance Computing in Science and
Engineering, edited by E. Krause, W. Jager, Springer–Verlag, Berlin, 54–
64.

[34] H.H. Hu, D.D. Joseph and M. Crochet (1992). Direct Simulation of Fluid
Particle Motion, Theoret. Comput. Fluid Dynamics, 3, 285–306.

[35] H.H. Hu, N.A. Patankar and M.Y. Zhu (2001). Direct numerical
simulation of fluid–solid systems using arbitrary Lagrangian–Eulerian
techniques, J. Comput. Phys., 169(2), 427–462.

[36] A. Johnson and T. Tezduyar (1997). 3–D simulations of fluid–particle
interactions with the number of particles reaching 100, Comput. Methods
Appl. Mech. Engrg., 145, 301–321.

[37] G.G. Joseph, R. Zenit, M.L. Hunt and A.M. Rosenwinkel (2001). Particle–
wall collision in a viscous fluid, J. Fluid Mech., 433, 329–346.
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