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Abstract
Locomotion at low Reynolds numbers encounters stringent physical constraints due to the
dominance of viscous over inertial forces. A variety of swimming microorganisms have
demonstrated diverse strategies to generate self-propulsion in the absence of inertia. In particular,
ameboid and euglenoid movements exploit shape deformations of the cell body for locomotion.
Inspired by these biological organisms, the ‘push-me-pull-you’ (PMPY) swimmer (Avron J E et al
2005 New J. Phys. 7 234) represents an elegant artificial swimmer that can escape from the
constraints of the scallop theorem and generate self-propulsion in highly viscous fluid
environments. In this work, we present the first experimental realization of the PMPY swimmer,
which consists of a pair of expandable spheres connected by an extensible link. We designed and
constructed robotic PMPY swimmers and characterized their propulsion performance in highly
viscous silicone oil in dynamically similar, macroscopic experiments. The proof-of-concept
demonstrates the feasibility and robustness of the PMPY mechanism as a viable locomotion
strategy at low Reynolds numbers.

1. Introduction

Biological organisms adopt diverse strategies to swim
across different length scales [1–3], from swimming
microorganisms such as bacteria to fishes and mam-
mals such as blue whales [4]. The physics of swim-
ming involves a complex interplay between the body
actuation of the swimmer and the induced flow in
its surrounding fluid. The Reynolds number, Re =

ρUL/μ, characterizes the relative importance of iner-
tial to viscous forces in a swimming problem, for a
swimmer with a characteristic length L and speed
U in a fluid with density ρ and dynamic viscosity
μ. Macroscopic aquatic animals typically reside in
the high Reynolds number regime and use inertia in
their locomotion. Swimming under the microscope,
on the other hand, occurs at low Reynolds num-
ber, where viscous forces dominate inertial effects.
Consider a bacterium with size 10μm swimming at
a speed 30μm s−1 in water, the Reynolds number
is on the order of 10−4. Inertia is thus negligible,

rendering macroscopic mechanisms that rely on
inertia, such as rigid flapping motion, ineffective
in propelling swimmers in the microscopic world.
Purcell’s scallop theorem shows that any recipro-
cal motion cannot generate self-propulsion at low
Re [5, 6]. The absence of inertia imposes a fundamen-
tal challenge on effective locomotion strategies in this
physical regime, which has attracted substantial inter-
ests across different disciplines of science and engi-
neering [7–10]. The hydrodynamics of cell motility is
not only important for its fundamental role in physics
and biology; it has also attracted considerable, recent
attention due to its potential applications in design-
ing artificial microswimmers for medical tasks, such
as targeted drug delivery and microsurgery [11–13].

The biological world has shown us different
strategies to swim in the absence of inertia. Some
spermatozoa and bacteria swim by bending or rotat-
ing their slender appendages called flagella [14, 15].
The drag anisotropy of slender structures like flag-
ella allows these flagellated microorganisms to manip-
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Figure 1. (a) Reconstructions of the euglenoid movement (from top to bottom) based on video recordings of euglenids [27]. (b)
The sequence of shape changes for a PMPY swimmer and notations [28].

ulate viscous drag for generating propulsive thrust.
Flagellar beating of spermatozoa has inspired the
development of artificial flexible flagella [16–18].
Another type of biomimetic microswimmers adopts
the helical structures of bacterial flagella for propul-
sion [19, 20]. These artificial propellers rely on the
presence of external magnetic fields for actuation.
As a remark, a genuine low-Re swimmer should be
both free of force and torque [15, 21]. While these
magnetically actuated structures are force-free, they
are not torque-free due to the externally imposed
magnetic torques. These structures, hence, do not
qualify as swimmers and should be more appropri-
ately termed propellers [18, 22]. Examples of low-Re
swimmers include chemical swimmers such as auto-
diffusiophoretic and auto-electrophoretic particles.
These phoretic swimmers convert chemical energy to
mobility by the generation of local gradients of solute
concentration or electrical potential via asymmetric
surface activity [23]. Although their locomotion does
not rely on external magnetic fields, the presence of
chemical fuels such as hydrogen peroxide is typically
required, which could limit their medical applications
in practical scenarios.

Another class of low-Re swimmers exploit shape
deformations for locomotion. While amoeboid loco-
motion is more commonly known for crawling on
solid surfaces, recent studies have showed that some
amoebae and neutrophils can swim by similar body
distortions [24–26]. As another notable example,
some euglenids execute large-amplitude deforma-
tions of the entire cell in a concerted fashion, known
as euglenoid movement or metaboly (figure 1(a)).
The euglenoid movement has been shown to be a
viable method of swimming, with a hydrodynamic
efficiency comparable with that by flagellar and cil-
iary propulsion [27]. Overall, the versatility of loco-
motion via shape deformations in traversing both
solid and fluid terrains is highly desirable for artifi-
cial microswimmers, which need to navigate complex

and varying biological environments in their medical
applications.

The euglenoid movement has inspired the design
of an artificial microswimmer known as the push-
me-pull-you (PMPY) swimmer by Avron et al [28].
The PMPY swimmer may be considered as a dis-
cretized version of the continuous euglenoid move-
ment, where the shape deformation is implemented
through a pair of deformable spheres that change their
volumes and separation distance. Figure 1(b) displays
the sequence of deformation, which resembles the
euglenoid movement (figure 1(a)). The propulsion
mechanisms may be understood intuitively as follows:
in step I → II, the expanding sphere acts as a source
that pushes away the contracting sphere, which acts
as a sink to pull the expanding sphere (hence the
name, PMPY [28]). Such PMPY mechanism results
in a net displacement in the direction of the contract-
ing sphere; note that the same mechanism is at play in
step III → IV, but the net displacement is expected to
less pronounced when the spheres are further apart.
Next, in step II → III in the sequence, where the link
between the spheres extends, the larger sphere serves
as an anchor to allow a greater reach of the smaller
sphere, resulting in a net displacement in the direc-
tion of the smaller sphere again. As a result of kine-
matic reversibility at low Reynolds numbers, when
the link contracts in step IV → V, the same net dis-
placement occurs but in the direction of the larger
sphere; yet, since the larger sphere is on the right-
hand side, the net displacement is towards the right.
This sequence of shape changes, therefore, leads to an
overall swimming motion towards the right.

The first use of reconfigurable linked-spheres for
locomotion at low Re was pioneered by Golestanian
& Najafi’s three-sphere swimmer [29], which con-
sists of three rigid spheres connected by two exten-
sible links. The simplicity and elegance of the design
has since attracted considerable attention [30–35]. By
allowing expansion and contraction of the spheres,
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Figure 2. Schematic of the experimental set up (top) and of the fabricated PMPY swimmer (bottom) immersed in a bath of high
viscosity silicone oil.

the PMPY mechanism requires only two spheres
and one extensible link, which is even conceptu-
ally simpler and more efficient than the three-sphere
swimmer [28, 36]. While the three-sphere swim-
mer has been realized using various macroscopic and
microscopic experimental platforms [37–40], the
bioinspired PMPY mechanism has not been experi-
mentally implemented to the best of our knowledge.

In this work we present the first experimental real-
ization of the PMPY swimmer at low Re. To main-
tain dynamic similarity with a low-Re environment,
a macroscopic robotic swimmer based on the PMPY
mechanism was immersed in a highly viscous sil-
icone oil. The use of dynamically similar, macro-
scale robotic swimmers has been effective for inves-
tigating different propulsion mechanisms at low Re,
including elastohydrodynamic [41, 42] and helical
[43–46] propulsion, among others [47–51]. In the
same spirit, we present here a macroscopic realiza-
tion of the bioinsipred PMPY swimmer as a proof-of-
concept. The structure of the paper is as follows. We
first present the fabrication process and experimental
design in section 2. Next, we discuss the performance
characterization of the PMPY swimmers in section 3,
before some concluding remarks on potential future
miniaturization in section 4.

2. Fabrication and experimental design

To realize the PMPY mechanism shown in figure 1(b),
two elastomeric spheres were fabricated by the sil-
icone molding process. First, the molds were 3D
printed using polylactic acid. No extra treatment was
applied after the printing. EcoFlex 00-30 (Smooth-On
Inc.) was chosen as the elastomeric material due to its
high elongation before break value (900%) and low
Young’s modulus (69 kPa). These features enabled
large radial expansions (up to 300%) with small input

pressures in the range of 100–140 kPa. The pneumatic
linear actuator (Original Line, Bimba Inc.) was used
as the central rod, due to its accuracy, repeatability
and ease of use. A schematic of the experimental setup
is shown in figure 2.

Three PMPY swimmers were fabricated with iden-
tical elastomeric spheres with an undeformed radius
of 3.8 cm and different linear actuator stroke lengths
(Δ� = �L − �s) of 4.8 cm, 8.6 cm, and 12.9 cm. The
volume change of the spheres affects their buoyant
forces, which would cause vertical displacement and
tilting of the swimmer. These buoyancy fluctuations
represent sources of noise in our measurements and
may contribute to deviations from theoretical pre-
dictions assuming neutral buoyancy. We minimized
these effects by filling the spheres with water, whose
density is closer to that of the silicon oil. This also
reduced the force on the tubing attached to a friction-
less track (Neewer 23.6 inch) above the tank, as shown
in figure 2. To supply pressure, the elastomeric spheres
with a single pressure input were connected to three-
way two-position solenoid valves (1/4′′, USSOLID)
and the linear actuator was connected to a five-way
two-position solenoid valve (1/4′′, USSOLID). A five-
way valve was required for the linear actuator because
of the two chambers (i.e., separate chambers are
used for extension and retraction) that need to be
actuated in the double-acting linear actuator. The
connection between the PMPY and the valves were
established through Tygon tubing (1/8′′ inner diame-
ter). An input pressure of 138 kPa was used to pressur-
ize both the spheres and the linear actuator. As shown
in figure 2, 3D printed adapters allow the attachment
of the spheres to the linear actuator while providing
connections for pneumatic tubing. The valve’s on/off
states were controlled via an Arduino Uno.

We immersed the swimmers in a bath of high
viscosity (100 000 cSt) silicone oil (Elkay Silicones
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Figure 3. Implementation of the full swimming cycle of swimmer with a stroke length of 12.9 cm according to the five steps
shown in figure 1(b). The net displacement was measured to be 10.5 mm to the right.

LK-SIL 100T-100K) and used slow actuation rates
for the pneumatic cylinder and spheres to maintain
a low-Re environment. Typical Reynolds numbers
in the experiments are on the order of 0.1. Spheres
were expanded to varying radial expansion ratios,
R = aL/as, by modifying their inflation and deflation
durations. A webcam (C922 1080p, Logitech Inc.) was
used to record the movement of the swimmers. Com-
puter vision toolbox of MATLAB was utilized to track
the PMPY swimmer. This was realized via the corner
function where the high contrast area on the swim-
mer was selected and tracked automatically through-
out the subsequent frames. The displacement of the
swimmer and the diameters of the spheres were mea-
sured by converting the number of pixels into physical
lengths from recorded videos of the experiments.

3. Results and discussion

In figure 3, we show a robotic PMPY swimmer exe-
cuting the sequence of motion depicted in figure 1(b)
in a typical experiment. After completing a full
swimming cycle, the swimmer obtained a net pos-
itive displacement to the right. See also a supple-
mentary video for the motion of the PMPY swim-
mer (available online at stacks.iop.org/JPhysBB/15/
064001/mmedia). We measured the net displacement
per cycle of the PMPY swimmer (X) at varying expan-
sion ratios (R) and stroke lengths (Δ�). As shown
in figure 4, for a given stroke length, as the expan-
sion ratio R is increased, an increase in displacement
per cycle X is evident. Also, by increasing the stroke
length of the swimmer Δ�, a more dramatic increase
in displacement per cycle is observed.

We compare our experimental measurements
with predictions by a simple theoretical model based
on the superposition of the solutions to the Stokes
equation for two deforming spheres [28]. When the

hydrodynamic interactions between the spheres are
ignored and assuming large expansion ratios, the net
displacement of a PMPY swimmer is given by X =

K(R − 1)Δ�/(R + 1), for a given expansion ratio R
and stroke length Δ� (see appendix A for more
details on the theoretical model), and K is a scale
factor we insert to obtain the best fit between our
experimental measurements and the formula. We
found that a scale factor of K = 0.3 provides reason-
able fittings between the experimental measurements
(symbols) and scaled theoretical prediction (dashed
lines), as shown in figure 4(a). Consistent with our
experimental measurements, the model predicts
more substantial enhancement in the net displace-
ment of the swimmer due to increase in stroke length
than increase in the radial expansion ratio. Further-
more, by non-dimensionalizing the net displacement
by the stroke length, i.e., X/Δ� = K(R − 1)/(R + 1),
data with different expansion ratios and stroke
lengths (symbols) all collapse onto a single curve as
predicted by the theory and observed in figure 4(b)
(dashed line). These results demonstrate the effec-
tiveness of the theoretical model in capturing the
essential swimming characteristics of the PMPY
swimmer.

We discuss the limitations in the comparison of
our experiments with the theoretical model. The
experiments measured consistently lower values of
the net displacement compared with the model’s pre-
dictions, as indicated by the small scale factor K of
0.3. There are several effects ignored in the theoreti-
cal model, which could either increase or decrease the
net displacement of the swimmer. First, we consider
the effect of hydrodynamic interaction between the
spheres. The original model by Avron et al assumed
the spheres to be infinitely apart and thus ignored
any hydrodynamic interaction. More recently, Wang
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Figure 4. (a) Net displacement per cycle, X, as a function of the radial expansion ratio of the spheres, R = as/aL. The dashed
lines represent the best fits with the theoretical predictions with a scale factor K = 0.3 for Δ� = 4.8 cm (black), 8.6 cm (blue),
and 12.9 cm (red). (b) Dimensionless net displacement per cycle scaled by the stroke length, X/Δ�, as a function of the radial
expansion ratio, a. The dashed line represents the best fit with theoretical prediction with a scale factor K = 0.3. In these
experiments, for each expansion ratio of the spheres, the swimmers were actuated for three cycles to obtained the average net
displacement per cycle. The standard deviation of the ten trials for each expansion ratio is provided as the error bars.

& Othmer [52] calculated the higher-order correc-
tions due to the interaction between the spheres in
the PMPY model. Based on their results, consider-
ing a typical setup with R = �L/�s = 2 and Δ� =

10as, we estimated the leading-order correction to
the net displacement (see equation (A.8) in appendix
A), 3asRln(�L/�s)/(R + 1)Δ�, to increase the net dis-
placement by approximately 14%. We thus argue
that the observed reduction in net displacement may
not be attributed to the hydrodynamic interaction
between the spheres.

Next we turn to the effect due to the presence of
the connecting rod, which was also ignored in the
theoretical model. In particular, the dead side of the
pneumatic cylinder (the portion with cylinder barrel)
always contributes additional drag at the rear end of
the swimmer throughout the swimming cycle. Such
an additional drag component modifies the asym-
metry in drag distribution on the swimmer, affect-
ing the swimmer’s net displacement. By modeling the
dead portion of the pneumatic cylinder (with length
�s) as an elongated rod, the drag on this portion can
be estimated as Dc = 2πμ�sU/[ln(�s/b) − 1/2] when
the cylinder moves axially at speed U, where b is the
radius of the cylinder [53]. With typical geometrical
values in the experiment (�s/as = 10 and �s/b = 40),
we estimated that the drag due to the cylinder could
be comparable to the drag on the smaller sphere in
our experiment. This additional drag component at
the rear end is hence not negligible, which would
alter the swimmer’s displacement in different man-
ners depending on the specific stroke. As a crude esti-
mate of its overall effect on the net displacement, we
lump this additional drag Dc ≈ 6πμasU together with
the drag on the rear sphere, which may be consid-
ered as increasing the effective size of the rear sphere
throughout the cycle in effect. For instance, consider

an original expansion ratio R = aL/as = 2, the addi-
tional drag due to cylinder would increase the effec-
tive size of the rear sphere from 2as to 3as in step II
→ III and from as to 2as in step IV → V, causing an
overall reduction in the swimmer’s net displacement
by approximately 24%. While this effect represents a
plausible source contributing to the lower values of
measured net displacement, we note that the reduc-
tion was more significant in the experiment. There
are other factors, including the drag on the pneu-
matic tubing and the asymmetric tension the tubing
exerts on the swimmer, that could also restrain the
swimmer’s movement. In addition, we defer the anal-
ysis of the confinement effects to future numerical
simulations due to the simultaneous presence of mul-
tiple and distinct types of confining surface (free and
solid surfaces) in our experiment. These various fac-
tors arising in the practical implementation may con-
tribute to the observed departure from predictions
from the simple theoretical model.

4. Concluding remarks

Inspired by the euglenoid movement, the PMPY
swimmer proposed by Avron et al [28] represents an
elegant self-propulsion mechanism at low Reynolds
numbers. We present in this work the first realiza-
tion of the PMPY mechanism via a dynamically sim-
ilar, macroscopic experimental setup. We designed
and fabricated robotic PMPY swimmers and charac-
terized their performance in highly viscous silicone
oil. Despite various practical complexities not con-
sidered in the original model, this proof-of-concept
demonstrated the feasibility and robustness of the
bioinspired mechanism in generating self-propulsion
at low Reynolds numbers.

We remark on potential ways of designing minia-
turized and untethered PMPY swimmers, which
requires sufficient and controllable power for soft
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sphere expansion and the linear actuation at small
scales. Swimmers consisting of rigid spheres with
variable separation distances have already been real-
ized experimentally with various techniques, includ-
ing optical tweezers [37] or external magnetic
fields [38–40]. The challenge of realizing unteth-
ered and deformable spheres at small scales may be
tackled with the use of soft active materials such as
hydrogels [54, 55] and liquid-crystal elastomers [56].
These novel materials exhibit configurational changes
in response to heat or light, representing a promis-
ing class of actuation mechanisms for reconfigurable
microscopic swimmers [57, 58]. Finally, the integra-
tion of such reconfigurable systems with machine
learning techniques presents a new path towards real-
izing adaptive (or “smart”) swimmers for robust loco-
motion in complex environments [61, 62, 63].
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Appendix A. Theoretical model of the
PMPY swimmer

We include in this appendix some key steps in arriving
at the theoretical results of the PMPY swimmer dis-
cussed in the main text. More details can be found in
the original work by Avron et al [28] and subsequent
analyses on this model swimmer [36, 52].

We denote the radius of the two spheres as ai(t),
where i = 1, 2 and t represents time, and the distance
between the center of the spheres as �(t). When the
spheres are assumed to be infinitely apart for hydro-
dynamic interaction to be ignored, the velocities Ui

and forces Fi on spheres 1 and 2 are related as

U1 =
F1

6πμa1
+

a2
1

�2
ȧ1, (A.1)

U2 =
F2

6πμa2
+

a2
2

�2
ȧ2, (A.2)

in Stokes flows. Here the first terms, Fi/(6πμai), and
second terms, a2

i ȧi/�
2, on the right hand of the above

equations, respectively, capture the effect of transla-
tion and radial expansion of the sphere [53, 59]. The
velocities are also related by the kinematics of the con-
necting rod as U2 − U1 = �̇. By enforcing the force-
free condition for the swimmer, F1 + F2 = 0, the
instantaneous velocity of the swimmer, Ū = (U1 +

U2)/2, is given by

Ū =
a1 − a2

2(a1 + a2)
�̇+

a2
1

�2
ȧ1. (A.3)

Upon integration of the velocity over time in the
strokes described in figure 1(b) for one cycle, the net
displacement of the swimmer is given by

X =
aL − as

aL + as
(�L − �s) =

R − 1

R + 1
Δ�. (A.4)

As expected for locomotion at Re, the net displace-
ment per cycle of a swimmer is independent of its rate
but only the sequence of shape changes [5, 60]. We
remark that while the net displacement per cycle is
rate-independent, the speed of the swimmer depends
on how fast the cycle is executed, which depends
linearly on the expansion rates of the spheres and
connecting rod, as shown by equation (A.3).

The above results by Avron et al do not account for
any hydrodynamic interaction between the spheres.
The leading-order effect due to the interaction
can be incorporated into the model by modifying
equations (A.5) and (A.6) as

U1 =
F1

6πμa1
+

F2

4πμ�
+

a2
1

�2
ȧ1, (A.5)

U2 =
F1

4πμ�
+

F2

6πμa2
+

a2
2

�2
ȧ2, (A.6)

to include the interaction terms. The modified instan-
taneous swimmer velocity then reads

Ū =
a1 − a2

2(a1 + a2)
�̇

[
1

1 − 3a1a2
�(a1+a2)

]
+

a2
1

�2
ȧ1,

∼ a1 − a2

2(a1 + a2)
�̇

[
1 +

3a1a2

�(a1 + a2)
+ · · ·

]
+

a2
1

�2
ȧ1,

(A.7)

upon expansion assuming ai � �, which reproduces
the leading-order correction obtained by Wang &
Othmer [52]. When the swimmer performs the
strokes described in figure 1(b) for a cycle, the net
displacement with leading-order correction due to
hydrodynamic interaction is given by

X ∼ R − 1

R + 1
Δ�

[
1 +

3asR

(R + 1)Δ�
ln(�L/�s)

]
, (A.8)

which shows an enhancement compared with the
case when hydrodynamic interaction is absent
(equation (A.4)).
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