Theory of Solid Mechanics

1. Notations and units

Notation

Quantity

Unit

\boldsymbol{\eta}_s

displacement

m

\rho_s

density

kg.m^{-3}

\lambda_s

first Lamé coefficients

N.m^{-2}

\mu_s

second Lamé coefficients

N.m^{-2}

E_s

Young modulus

kg.m^{-1}.s^{-2}

\nu_s

Poisson’s ratio

dimensionless

\boldsymbol{F}_s

deformation gradient

\boldsymbol{\Sigma}_s

second Piola-Kirchhoff tensor

f_s^t

body force

  • strain tensor \boldsymbol{F}_s = \boldsymbol{I} + \nabla \boldsymbol{\eta}_s

  • Cauchy-Green tensor \boldsymbol{C}_s = \boldsymbol{F}_s^{T} \boldsymbol{F}_s

  • Green-Lagrange tensor

\begin{align} \boldsymbol{E}_s &= \frac{1}{2} \left( \boldsymbol{C}_s - \boldsymbol{I} \right) \\ &= \underbrace{\frac{1}{2} \left( \nabla \boldsymbol{\eta}_s + \left(\nabla \boldsymbol{\eta}_s\right)^{T} \right)}_{\boldsymbol{\epsilon}_s} + \underbrace{\frac{1}{2} \left(\left(\nabla \boldsymbol{\eta}_s\right)^{T} \nabla \boldsymbol{\eta}_s \right)}_{\boldsymbol{\gamma}_s} \end{align}

2. Equations

Newton’s second law allows us to define the fundamental equation of solid mechanics, as follows

\rho^*_{s} \frac{\partial^2 \boldsymbol{\eta}_s}{\partial t^2} - \nabla \cdot \left(\boldsymbol{F}_s \boldsymbol{\Sigma}_s\right) = \boldsymbol{f}^t_s

2.1. Linear elasticity

\begin{align} \boldsymbol{F}_s &= \text{Identity} \\ \boldsymbol{\Sigma}_s &=\lambda_s tr( \boldsymbol{\epsilon}_s)\boldsymbol{I} + 2\mu_s\boldsymbol{\epsilon}_s \end{align}

2.2. Hyperelasticity

2.2.1. Saint-Venant-Kirchhoff

\boldsymbol{\Sigma}_s=\lambda_s tr( \boldsymbol{E}_s)\boldsymbol{I} + 2\mu_s\boldsymbol{E}_s

2.2.2. Neo-Hookean

\boldsymbol{\Sigma}_s= \mu_s J^{-2/3}(\boldsymbol{I} - \frac{1}{3} \text{tr}(\boldsymbol{C}) \ \boldsymbol{C}^{-1})
\boldsymbol{\Sigma}_s^ = \boldsymbol{\Sigma}_s^\text{iso} + \boldsymbol{\Sigma}_s^\text{vol}
Isochoric part : \boldsymbol{\Sigma}_s^\text{iso}
Table 1. Isochoric law
Name \mathcal{W}_S(J_s) \boldsymbol{\Sigma}_s^{\text{iso}}

Neo-Hookean

\mu_s J^{-2/3}(\boldsymbol{I} - \frac{1}{3} \text{tr}(\boldsymbol{C}) \ \boldsymbol{C}^{-1})

Volumetric part : \boldsymbol{\Sigma}_s^\text{vol}
Table 2. Volumetric law
Name \mathcal{W}_S(J_s) \boldsymbol{\Sigma}_s^\text{vol}

classic

\frac{\kappa}{2} \left( J_s - 1 \right)^2

simo1985

\frac{\kappa}{2} \left( ln(J_s) \right)

2.3. Axisymmetric reduced model

Here, we are interested in a 1D reduced model, named generalized string.

The axisymmetric form, which will interest us here, is a tube of length L and radius R_0. It is oriented following the z axis and r represents the radial axis. The reduced domain, named \Omega_s^* is represented by the dotted line. So, the radial displacement \eta_s is calculated in the domain \Omega_s^*=\lbrack0,L\rbrack.

We introduce then \Omega_s^{'*}, where we also need to estimate a radial displacement as before. The unique variance is this displacement direction.

Reduced Model Geometry
Figure 1 : Geometry of the reduced model

The mathematical problem associated to this reduced model can be described as

\rho^*_s h \frac{\partial^2 \eta_s}{\partial t^2} - k G_s h \frac{\partial^2 \eta_s}{\partial x^2} + \frac{E_s h}{1-\nu_s^2} \frac{\eta_s}{R_0^2} - \gamma_v \frac{\partial^3 \eta}{\partial x^2 \partial t} = f_s.

where \eta_s is the radial displacement that satisfies this equation, k is the Timoshenko’s correction factor, and \gamma_v is a viscoelasticity parameter. The material is defined by its density \rho_s^*, its Young’s modulus E_s, its Poisson’s ratio \nu_s and its shear modulus G_s

In the end, we take \eta_s=0\text{ on }\partial\Omega_s^* as a boundary condition, which will fix the wall to its extremities.