A longitudinaly cooled helix

In this test case we will simulate a longitudinaly cooled helix. We consider only the thermoelectric behaviour of the helix.

1. Running the case

You have 2 choices:

  • either use HiFiMagnet apps:

mpirun -np 32 feelpp_hfm_coupledcartmodel_3DP1N1 --config-file H1_p_nonlinear.cfg
  • or use Feel++ thermoelectric toolbox:

mpirun -np 32 feelpp_hfm_thermoelectric --config-file H1-toolbox_nonlinear.cfg

The thermolelectric toolbox example is more in detailed in the toolbox documentation.

If you want to change the number of procs used, you need to create a proper partition mesh. See the next sections for a detailed guide.

1.1. Convert the mesh

The mesh may be converted into an another format using gmsh compiled with proper med support

gmsh -0 -bin HL-31_H1.med -o HL-31_H1.msh

The resulting mesh is in mm

1.2. Partitionning the mesh:

feelpp_mesh_partitioner --ifile HL-31_H1.msh [--ofile HL-31_H1_p32] --part 32

2. Data files

The data files may be retreived from this repository. The mesh files are stored in collection hifimanget/cases/v0.108/HL-31_H1 collection on Unistra Girder

2.1. Mesh file

  • HL-31_H1.med

  • HL-31_H1.msh

  • HL-31_H1_p32.json, HL-31_H1_p32.h5

2.2. Simulation cfg file

  • H1_p_nonlinear.cfg for HiFiMagnet app with Newton solver,

  • H1_p_nonlinear-picard.cfg for HiFiMagnet app with Picard solver,

  • H1-toolbox_nonlinear.cfg for Feel++ thermoelectric toolbox with Newton solver.

2.3. Model files

  • HL-31_H1_nonlinear.json

The data are given to be consistant with the mesh in mm. If you ever want to use a mesh in m:

  • Change the physical values,

  • Change the Cooling Boundary Conditions values,

3. Input parameters

Name Description Value Unit

\(V_D\)

electrical potential

9

\(V\)

4. Outputs

Name Description Value Unit

\(min(T)\)

min of Temperature Field

293.32

\(K\)

\(max(T)\)

max of Temperature Field

400.781

\(K\)

\(I\)

current

28.771 (-28.768)

\(kA\)