Methodology Overview
This documentation outlines the methodology used to acquire, process, and simulate tree data from OpenStreetMap
for a specified area. The process involves several key steps, including data acquisition, tree library creation, tree scaling, alpha wrapping for mesh generation, and tree placement in the simulation environment. Each of these steps is crucial for ensuring accurate and efficient representation of trees within the simulation.
2. Summary
-
Data Acquisition: Utilizing the Overpass API and cpr, we query OpenStreetMap for tree data within a specified bounding box. This data includes GPS coordinates, height, trunk circumference, and crown diameter, among other attributes.
-
Tree Library: We assume trees belong to specific shape categories (cone, oval, round) and use simple models for LOD 0, created with
Gmsh
. For higher LODs, we retrieve reference tree meshes from the Sketchup 3D Warehouse and pre-process them using Meshlab. -
Tree Scaling: We scale the reference tree meshes based on the dimensions provided in the OpenStreetMap data. The scaling factor is determined by the maximum of the height ratio, trunk circumference ratio, and crown diameter ratio.
-
CGAL 3D Alpha Wrapping: To generate tree meshes at runtime, we use the CGAL 3D Alpha Wrapping algorithm, which constructs a simplified mesh that approximates the input geometry. This process is performed for LOD 1,2 and 3 using appropriate α values.
-
Tree Placement: We convert the GPS coordinates of the trees to Cartesian coordinates relative to a specified origin. The scaled tree meshes are then placed at the corresponding locations in the simulation.
-
Mesh Merging: To optimize rendering performance, we merge the tree meshes into a single mesh for each LOD. This process involves combining the individual tree meshes as well as other scene elements (buildings, terrain) to create a unified mesh.
-
Parallelization: We parallelize the tree placement steps to improve performance. This involves distributing the workload across multiple threads to take advantage of multi-core processors.
By following this methodology, we ensure that the trees are accurately represented and efficiently processed within the simulation environment.
References
-
[verdie15] Yannick Verdie, Florent Lafarge, Pierre Alliez, "LOD Generation for Urban Scenes", ACM Transactions on Graphics, 34(3): 15, 2015, DOI: 10.1145/2766946
-
[verdie14] Yannick Verdie, Florent Lafarge, "Detecting parametric objects in large scenes by Monte Carlo sampling", International Journal of Computer Vision, 106(1): 57—75, 2014, DOI: 10.1007/s11263-013-0641-0
-
[stava14] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mech, O. Deussen, B. Benes, "Inverse Procedural Modeling of Trees", Preprint, 2014, Adobe Systems Inc., USA; University of Konstanz, Germany; Shenzhen Institute of Advanced Technology, China; Purdue University, USA.
-
[adtree] Shenglan Du, Roderik Lindenbergh, Hugo Ledoux, Jantien Stoter, Liangliang Nan, "AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees", MDPI, 2019, MDPI: 2072-4292/11/8/942
-
[benes] Bedrich Benes, "Computational Vegetation", Computational Vegetation
-
[cgal] CGAL Development Team, "CGAL User and Reference Manual", CGAL User and Reference Manual
-
[feelpp] Feel Consortium, "Feel", Feel++ Documentation
-
[curl] "curl", curl Homepage
-
[meshlab] MeshLab Developers, "MeshLab", MeshLab Homepage
-
[overpass] OpenStreetMap Contributors, "Overpass API", Overpass API
-
[openstreetmap] "OpenStreetMap", OpenStreetMap Help
-
[img:TreeShade] Yujin Park, Jean-Michel Guldmann, Desheng Liu, "Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches", 2021, ScienceDirect: Impacts of tree and building shades on the urban heat island
-
[img:NY] Christophe Prud’homme, "New York City mesh", 2023, GitHub: New York City mesh
-
[img:aerialview] Conseil départemental de la Somme, "Aerial thermal view", 2023, Aerial thermal view
-
[img:street_thermography] P. Verchere, "Thermal image of a street in the city", 2023, The Conversation: Thermal image of a street in the city
-
[img:mercator] Bibm@th, "Mercator projection", 2024, Bibm@th: Mercator projection
-
[stl] Wikipedia, "STL (file format) - Wikipedia", 2023, Wikipedia: STL (file format)
-
[cgal_alpha_wrapper] Pierre Alliez, David Cohen-Steiner, Michael Hemmer, Cédric Portaneri, Mael Rouxel-Labbé, "CGAL 5.6.1 - 3D Alpha Wrapping", 2024, CGAL: 3D Alpha Wrapping
-
[cgal_affine_transformation] CGAL Development Team, "CGAL 5.6.1 - 2D and 3D Linear Geometry Kernel", 2024, CGAL: 2D and 3D Linear Geometry Kernel
-
[wgs84] Wikipedia, "World Geodetic System", 2024, Wikipedia: World Geodetic System
-
[wgs84_to_cartesian] Christian Berger, "WGS84toCartesian", 2021, GitHub: WGS84toCartesian
-
[k-nn] Wikipedia, "K-nearest neighbors algorithm", 2024, Wikipedia: K-nearest neighbors algorithm
-
[mercator-proj] Wikipedia, "Mercator projection", 2024, Wikipedia: Mercator projection
-
[sketchup] Wikipedia, "SketchUp", 2024, Wikipedia: SketchUp
-
[json] Wikipedia, "JSON", 2024, Wikipedia: JSON
-
[corefine-compute] CGAL Development Team, "CGAL 5.6.1 - 3D Alpha Shapes", 2024, CGAL: 3D Alpha Shapes
-
[hidalgo2-ubm] HiDALGO2, "Hidalgo2-UBM", 2024, HiDALGO2: Urban Building Model
-
[hidalgo2] HiDALGO2, "HiDALGO2", 2024, HiDALGO2 Homepage
-
[green-deal] European Commission, "European Green Deal", 2024, European Green Deal
-
[delaunay-wiki] Wikipedia, "Delaunay triangulation", 2024, Wikipedia: Delaunay triangulation
-
[hidalgo2-about] HiDALGO2, "About HiDALGO2", 2024, HiDALGO2: About
-
[cemosis] Cemosis, "Cemosis", 2024, Cemosis Homepage
-
[irma] IRMA, "IRMA", 2024, IRMA Homepage
-
[inria] INRIA, "INRIA", 2024, INRIA Homepage
-
[alliez] Pierre Alliez, "Pierre Alliez", 2024, Pierre Alliez Homepage
-
[chabannes] Vincent Chabannes, "Vincent Chabannes", 2024, ResearchGate: Vincent Chabannes
-
[paraview] Kitware, "ParaView", 2024, ParaView Homepage
-
[cgal-master] CGAL Development Team, "CGAL", 2024, CGAL GitHub
-
[overpass-ql] Roland Olbricht, "Overpass QL", 2024, Overpass QL
-
[overpass-turbo] Roland Olbricht, Martin Raifer, "Overpass turbo", 2024, Overpass turbo
-
[exaMA] ExaMA Consortium, "Exa-MA", 2024, Exa-MA: Methods and Algorithms for Exascale
-
[numpex] Numpex Consortium, "Numpex", 2024, Numpex Homepage
-
[gmsh] Christophe Geuzaine, Jean-François Remacle, "Gmsh", 2024, Gmsh Homepage
-
[img:tree-shape] Noriah Othman, Mashitah Mat Isa, Noralizawati Mohamed, Ramly Hasan, "Street Planting Compositions: The Public and Expert Perspectives", 2019, ResearchGate: Street Planting Compositions
-
[prudhomme] Christophe Prud’homme, "Christophe Prud’homme", 2024, ResearchGate: Christophe Prud’homme
-
[auto-refine-triangle-soup] CGAL Development Team, "CGAL 6.0 - Polygon Mesh Processing", 2024, CGAL: Polygon Mesh Processing
-
[cpr] CPR Developers, "Cpp Requests: Curl for People", 2024, GitHub: Cpp Requests
-
[pouvoir-arbre] Tania Landes , "The Conversation: D’où vient le pouvoir rafraîchissant des arbres en ville ?", 2023, The Conversation: D’où vient le pouvoir rafraîchissant des arbres en ville?
-
[science-direct] Yujin Park, Jean-Michel Guldmann, Desheng Liu, "Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches", 2021, ScienceDirect: Impacts of tree and building shades on the urban heat island
-
[gmsh-geo] Gmsh Developers, "Gmsh .geo file format", 2024, Gmsh .geo file format
-
[highest-plants] New Scientist - Aisling Irwin, "World’s highest plants discovered growing 6km above sea level", 2016, New Scientist: World’s highest plants discovered growing 6km above sea level
-
[raycasting] Wikipedia, "Ray casting", 2024, Wikipedia: Ray casting
-
[bvh] Wikipedia, "Bounding volume hierarchy", 2024, Wikipedia: Bounding volume hierarchy
-
[kd-tree] Wikipedia, "K-d tree", 2024, Wikipedia: K-d tree
-
[async] cplusplus.com, "std::async", 2024, cplusplus.com: std::async
-
[is_valid] CGAL Development Team, "CGAL 5.6.1 - 3D Mesh Generation", 2024, link:https://doc.cgal.org/latest/Surface_mesh/classCGAL_1_1Surface__mesh.html#a14cb5e4c51a02d652ba33bf906f39fc0[CGAL: is_valid()
-
[auto_refine_triangle_soup]] CGAL Development Team, "CGAL 6.0 - Polygon Mesh Processing", 2024, CGAL: autorefine_triangle_soup()
-
[deep_learning] Wikipedia, "Deep learning", 2024, Wikipedia: Deep learning
-
[numpex_exama] Numpex, "Exa-MA PC1", 2024, Numpex: Exa-MA PC1