Data
The data we used for the Vegetation Project
will be available in the data/vegetation/tree_ref
directory. The total data size is 3.3 MiB and is divided into two subdirectories:
1. tree_ref_sketchup (size: 3.2 MiB)
Contains the pre-processed tree models retrieved from the Sketchup 3D Warehouse in stl format. These models have been cleaned, normalized, and translated to the origin to ensure consistency across different tree shapes. They will be used to generate reference tree meshes at runtime using the CGAL 3D Alpha Wrapping algorithm.
![]() |
![]() |
![]() |
A cleaned conifer (Cone tree) |
A cleaned Ginkgo (Oval tree) |
A cleaned Quercus (Round tree) |
2. tree_ref_geo (size: 3.3 KiB)
Contains the Gmsh .geo files used to generate the LOD 0 reference tree (and trunk) meshes, here is an example of the Cone_tree_lod0.geo
file:
SetFactory("OpenCASCADE");
// Define parameters
lc = 7; // Characteristic mesh size
L = 0.7; // Length of the trunk
R_base = 0.02; // Radius of the trunk
R_ball = 0.3; // Radius of the ball (foliage)
cone_height = 0.1; // Additional height for rounding the top
apex_radius = 0.01; // Radius at the apex for rounding
// Define the cone geometry (foliage)
Cone(2) = {0, 0, 0.2, 0, 0, L + cone_height, R_ball, apex_radius}; // Cone with rounded top
// Define physical groups
// Physical Volume("Trunk") = {1}; // Assigning a physical name to the trunk
Physical Volume("Foliage") = {2}; // Assigning a physical name to the cone
// Define the mesh size
Mesh.CharacteristicLengthMax = lc;
Mesh.CharacteristicLengthMin = lc/10;
The generated meshes are stored in the data/vegetation/tree_ref
directory in .stl
format (size: 153.6 KiB).
![]() |
![]() |
![]() |
![]() |
A trunk |
A lod 0 cone tree |
A lod 0 oval tree |
A lod 0 round tree |
Ultimatly, we would like to directly use the .geo
files at runtime to avoid the need to store the tree meshes in memory. This will be part of our future work to optimize the memory usage and the overall performance of the Vegetation Project
.
References
-
[verdie15] Yannick Verdie, Florent Lafarge, Pierre Alliez, "LOD Generation for Urban Scenes", ACM Transactions on Graphics, 34(3): 15, 2015, DOI: 10.1145/2766946
-
[verdie14] Yannick Verdie, Florent Lafarge, "Detecting parametric objects in large scenes by Monte Carlo sampling", International Journal of Computer Vision, 106(1): 57—75, 2014, DOI: 10.1007/s11263-013-0641-0
-
[stava14] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mech, O. Deussen, B. Benes, "Inverse Procedural Modeling of Trees", Preprint, 2014, Adobe Systems Inc., USA; University of Konstanz, Germany; Shenzhen Institute of Advanced Technology, China; Purdue University, USA.
-
[adtree] Shenglan Du, Roderik Lindenbergh, Hugo Ledoux, Jantien Stoter, Liangliang Nan, "AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees", MDPI, 2019, MDPI: 2072-4292/11/8/942
-
[benes] Bedrich Benes, "Computational Vegetation", Computational Vegetation
-
[cgal] CGAL Development Team, "CGAL User and Reference Manual", CGAL User and Reference Manual
-
[feelpp] Feel Consortium, "Feel", Feel++ Documentation
-
[curl] "curl", curl Homepage
-
[meshlab] MeshLab Developers, "MeshLab", MeshLab Homepage
-
[overpass] OpenStreetMap Contributors, "Overpass API", Overpass API
-
[openstreetmap] "OpenStreetMap", OpenStreetMap Help
-
[img:TreeShade] Yujin Park, Jean-Michel Guldmann, Desheng Liu, "Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches", 2021, ScienceDirect: Impacts of tree and building shades on the urban heat island
-
[img:NY] Christophe Prud’homme, "New York City mesh", 2023, GitHub: New York City mesh
-
[img:aerialview] Conseil départemental de la Somme, "Aerial thermal view", 2023, Aerial thermal view
-
[img:street_thermography] P. Verchere, "Thermal image of a street in the city", 2023, The Conversation: Thermal image of a street in the city
-
[img:mercator] Bibm@th, "Mercator projection", 2024, Bibm@th: Mercator projection
-
[stl] Wikipedia, "STL (file format) - Wikipedia", 2023, Wikipedia: STL (file format)
-
[cgal_alpha_wrapper] Pierre Alliez, David Cohen-Steiner, Michael Hemmer, Cédric Portaneri, Mael Rouxel-Labbé, "CGAL 5.6.1 - 3D Alpha Wrapping", 2024, CGAL: 3D Alpha Wrapping
-
[cgal_affine_transformation] CGAL Development Team, "CGAL 5.6.1 - 2D and 3D Linear Geometry Kernel", 2024, CGAL: 2D and 3D Linear Geometry Kernel
-
[wgs84] Wikipedia, "World Geodetic System", 2024, Wikipedia: World Geodetic System
-
[wgs84_to_cartesian] Christian Berger, "WGS84toCartesian", 2021, GitHub: WGS84toCartesian
-
[k-nn] Wikipedia, "K-nearest neighbors algorithm", 2024, Wikipedia: K-nearest neighbors algorithm
-
[mercator-proj] Wikipedia, "Mercator projection", 2024, Wikipedia: Mercator projection
-
[sketchup] Wikipedia, "SketchUp", 2024, Wikipedia: SketchUp
-
[json] Wikipedia, "JSON", 2024, Wikipedia: JSON
-
[corefine-compute] CGAL Development Team, "CGAL 5.6.1 - 3D Alpha Shapes", 2024, CGAL: 3D Alpha Shapes
-
[hidalgo2-ubm] HiDALGO2, "Hidalgo2-UBM", 2024, HiDALGO2: Urban Building Model
-
[hidalgo2] HiDALGO2, "HiDALGO2", 2024, HiDALGO2 Homepage
-
[green-deal] European Commission, "European Green Deal", 2024, European Green Deal
-
[delaunay-wiki] Wikipedia, "Delaunay triangulation", 2024, Wikipedia: Delaunay triangulation
-
[hidalgo2-about] HiDALGO2, "About HiDALGO2", 2024, HiDALGO2: About
-
[cemosis] Cemosis, "Cemosis", 2024, Cemosis Homepage
-
[irma] IRMA, "IRMA", 2024, IRMA Homepage
-
[inria] INRIA, "INRIA", 2024, INRIA Homepage
-
[alliez] Pierre Alliez, "Pierre Alliez", 2024, Pierre Alliez Homepage
-
[chabannes] Vincent Chabannes, "Vincent Chabannes", 2024, ResearchGate: Vincent Chabannes
-
[paraview] Kitware, "ParaView", 2024, ParaView Homepage
-
[cgal-master] CGAL Development Team, "CGAL", 2024, CGAL GitHub
-
[overpass-ql] Roland Olbricht, "Overpass QL", 2024, Overpass QL
-
[overpass-turbo] Roland Olbricht, Martin Raifer, "Overpass turbo", 2024, Overpass turbo
-
[exaMA] ExaMA Consortium, "Exa-MA", 2024, Exa-MA: Methods and Algorithms for Exascale
-
[numpex] Numpex Consortium, "Numpex", 2024, Numpex Homepage
-
[gmsh] Christophe Geuzaine, Jean-François Remacle, "Gmsh", 2024, Gmsh Homepage
-
[img:tree-shape] Noriah Othman, Mashitah Mat Isa, Noralizawati Mohamed, Ramly Hasan, "Street Planting Compositions: The Public and Expert Perspectives", 2019, ResearchGate: Street Planting Compositions
-
[prudhomme] Christophe Prud’homme, "Christophe Prud’homme", 2024, ResearchGate: Christophe Prud’homme
-
[auto-refine-triangle-soup] CGAL Development Team, "CGAL 6.0 - Polygon Mesh Processing", 2024, CGAL: Polygon Mesh Processing
-
[cpr] CPR Developers, "Cpp Requests: Curl for People", 2024, GitHub: Cpp Requests
-
[pouvoir-arbre] Tania Landes , "The Conversation: D’où vient le pouvoir rafraîchissant des arbres en ville ?", 2023, The Conversation: D’où vient le pouvoir rafraîchissant des arbres en ville?
-
[science-direct] Yujin Park, Jean-Michel Guldmann, Desheng Liu, "Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches", 2021, ScienceDirect: Impacts of tree and building shades on the urban heat island
-
[gmsh-geo] Gmsh Developers, "Gmsh .geo file format", 2024, Gmsh .geo file format
-
[highest-plants] New Scientist - Aisling Irwin, "World’s highest plants discovered growing 6km above sea level", 2016, New Scientist: World’s highest plants discovered growing 6km above sea level
-
[raycasting] Wikipedia, "Ray casting", 2024, Wikipedia: Ray casting
-
[bvh] Wikipedia, "Bounding volume hierarchy", 2024, Wikipedia: Bounding volume hierarchy
-
[kd-tree] Wikipedia, "K-d tree", 2024, Wikipedia: K-d tree
-
[async] cplusplus.com, "std::async", 2024, cplusplus.com: std::async
-
[is_valid] CGAL Development Team, "CGAL 5.6.1 - 3D Mesh Generation", 2024, link:https://doc.cgal.org/latest/Surface_mesh/classCGAL_1_1Surface__mesh.html#a14cb5e4c51a02d652ba33bf906f39fc0[CGAL: is_valid()
-
[auto_refine_triangle_soup]] CGAL Development Team, "CGAL 6.0 - Polygon Mesh Processing", 2024, CGAL: autorefine_triangle_soup()
-
[deep_learning] Wikipedia, "Deep learning", 2024, Wikipedia: Deep learning
-
[numpex_exama] Numpex, "Exa-MA PC1", 2024, Numpex: Exa-MA PC1